ﻻ يوجد ملخص باللغة العربية
The ${}^{12}mathrm{C} + {}^{12}mathrm{C}$ fusion reaction plays a vital role in the explosive phenomena of the universe. The resonances in the Gamow window rule its reaction rate and products. Hence, the determination of the resonance parameters by nuclear models is indispensable as the direct measurement is not feasible. Here, for the first time, we report the resonances in the ${}^{12}mathrm{C} + {}^{12}mathrm{C}$ fusion reaction described by a full-microscopic nuclear model. The model plausibly reproduces the measured low-energy astrophysical $S$-factors and predicts the resonances in the Gamow window. Contradictory to the hindrance model, we conclude that there is no low-energy suppression of the $S$-factor.
A quantitative study of the astrophysically important sub-barrier fusion of $^{12}$C+$^{12}$C is presented. Low-energy collisions are described in the body-fixed reference frame using wave-packet dynamics within a nuclear molecular picture. A collect
The $^{12}$C+$^{12}$C fusion reaction plays a crucial role in stellar evolution and explosions. Its open reaction channels mainly include $alpha$, $p$, $n$, and ${}^{8}$Be. Despite more than a half century of efforts, large discrepancies remain among
Lowest energy spectrum of the $^{12}$C nucleus is analyzed in the 3$alpha$ cluster model with a deep $alphaalpha$-potential of Buck, Friedrich and Wheatley with Pauli forbidden states in the $S$ and $D$ waves. The direct orthogonalization method is a
Form factors for $alpha+{^{12}}$C inelastic scattering are obtained within two theoretical ($alpha+alpha+alpha$) approaches: The hyperspherical framework for three identical bosons, and the algebraic cluster model assuming the $D_{3h}$ symmetry of an
We use an underground counting lab with an extremely low background to perform an activity measurement for the $^{12}$C+$^{13}$C system with energies down to $Erm_{c.m.}$=2.323 MeV, at which the $^{12}$C($^{13}$C,$p$)$^{24}$Na cross section is found