ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-body description of $boldsymbol{^{12}}$C: From the hyperspherical formulation to the algebraic cluster model and its application to $boldsymbol{alpha}+boldsymbol{^{12}}$C inelastic scattering

222   0   0.0 ( 0 )
 نشر من قبل Jes\\'us Casal
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Form factors for $alpha+{^{12}}$C inelastic scattering are obtained within two theoretical ($alpha+alpha+alpha$) approaches: The hyperspherical framework for three identical bosons, and the algebraic cluster model assuming the $D_{3h}$ symmetry of an equilateral triangle subject to rotations and vibrations. Results show a good agreement, with form factors involving the Hoyle state having a slightly larger extension within the hyperspherical approach. Coupled-channel calculations using these form factors are ongoing.



قيم البحث

اقرأ أيضاً

The ${}^{12}mathrm{C} + {}^{12}mathrm{C}$ fusion reaction plays a vital role in the explosive phenomena of the universe. The resonances in the Gamow window rule its reaction rate and products. Hence, the determination of the resonance parameters by n uclear models is indispensable as the direct measurement is not feasible. Here, for the first time, we report the resonances in the ${}^{12}mathrm{C} + {}^{12}mathrm{C}$ fusion reaction described by a full-microscopic nuclear model. The model plausibly reproduces the measured low-energy astrophysical $S$-factors and predicts the resonances in the Gamow window. Contradictory to the hindrance model, we conclude that there is no low-energy suppression of the $S$-factor.
The algebraic molecular model is used in $^{12}$C to construct densities and transition densities connecting low-lying states of the rotovibrational spectrum, first and foremost those belonging to the rotational bands based on the ground and the Hoyl e states. These densities are then used as basic ingredients to calculate, besides electromagnetic transition probabilities, nuclear potentials and formfactors to describe elastic and inelastic $alpha$+$^{12}$C scattering processes. The calculated densities and transition densities are also compared with those obtained by directly solving the problem of three interacting alphas within a three-body approach where continuum effects, relevant in particular for the Hoyle state, are properly taken into account.
Densities and transition densities are computed in an equilateral triangular alpha-cluster model for $^{12}$C, in which each $alpha$ particle is taken as a gaussian density distribution. The ground-state, the symmetric vibration (Hoyle state) and the asymmetric bend vibration are analyzed in a molecular approach and dissected into their components in a series of harmonic functions, revealing their intrinsic structures. The transition densities in the laboratory frame are then used to construct form-factors and to compute DWBA inelastic cross-sections for the $^{12}$C$(alpha, alpha)$ reaction. The comparison with experimental data indicates that the simple geometrical model with rotations and vibrations gives a reliable description of reactions where $alpha$-cluster degrees of freedom are involved.
We carry out an ab initio calculation of the neutrino flux-folded inclusive cross sections, measured on $^{12}$C by the MiniBooNE and T2K collaborations in the charged-current quasielastic (CCQE) regime. The calculation is based on realistic two- and three-nucleon interactions, and on a realistic nuclear electroweak current with one-and two-nucleon terms that are constructed consistently with these interactions and reproduce low-energy electroweak transitions. Numerically exact quantum Monte Carlo methods are utilized to compute the nuclear weak response functions, by fully retaining many-body correlations in the initial and final states and interference effects between one- and two-body current contributions. We employ a nucleon axial form factor of the dipole form with $Lambda_A = 1.0$ or $1.15$ GeV, the latter more in line with a very recent lattice QCD determination. The calculated cross sections are found to be in good agreement with the neutrino data of MiniBooNE and T2K, and antineutrino MiniBooNE data, yielding a consistent picture of nuclei and their electroweak properties across a wide regime of energy and momenta.
The molecular algebraic model based on three and four alpha clusters is used to describe the inelastic scattering of alpha particles populating low-lying states in $^{12}$C and $^{16}$O. Optical potentials and inelastic formfactors are obtained by fo lding densities and transition densities obtained within the molecular model. One-step and multi-step processes can be included in the reaction mechanism calculation. In spite of the simplicity of the approach the molecular model with rotations and vibrations provides a reliable description of reactions where $alpha$-cluster degrees of freedom are involved and good results are obtained for the excitation of several low-lying states. Within the same model we briefly discuss the expected selection rules for the $alpha$-transfer reactions from $^{12}$C and $^{16}$O.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا