ﻻ يوجد ملخص باللغة العربية
Form factors for $alpha+{^{12}}$C inelastic scattering are obtained within two theoretical ($alpha+alpha+alpha$) approaches: The hyperspherical framework for three identical bosons, and the algebraic cluster model assuming the $D_{3h}$ symmetry of an equilateral triangle subject to rotations and vibrations. Results show a good agreement, with form factors involving the Hoyle state having a slightly larger extension within the hyperspherical approach. Coupled-channel calculations using these form factors are ongoing.
The ${}^{12}mathrm{C} + {}^{12}mathrm{C}$ fusion reaction plays a vital role in the explosive phenomena of the universe. The resonances in the Gamow window rule its reaction rate and products. Hence, the determination of the resonance parameters by n
The algebraic molecular model is used in $^{12}$C to construct densities and transition densities connecting low-lying states of the rotovibrational spectrum, first and foremost those belonging to the rotational bands based on the ground and the Hoyl
Densities and transition densities are computed in an equilateral triangular alpha-cluster model for $^{12}$C, in which each $alpha$ particle is taken as a gaussian density distribution. The ground-state, the symmetric vibration (Hoyle state) and the
We carry out an ab initio calculation of the neutrino flux-folded inclusive cross sections, measured on $^{12}$C by the MiniBooNE and T2K collaborations in the charged-current quasielastic (CCQE) regime. The calculation is based on realistic two- and
The molecular algebraic model based on three and four alpha clusters is used to describe the inelastic scattering of alpha particles populating low-lying states in $^{12}$C and $^{16}$O. Optical potentials and inelastic formfactors are obtained by fo