ترغب بنشر مسار تعليمي؟ اضغط هنا

Peculiarity of the $^{12}$C$(0^+)$ and $^{12}$C$(2^+)$ energy spectrum in a 3$alpha$ model

75   0   0.0 ( 0 )
 نشر من قبل Ergash M. Tursunov
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Lowest energy spectrum of the $^{12}$C nucleus is analyzed in the 3$alpha$ cluster model with a deep $alphaalpha$-potential of Buck, Friedrich and Wheatley with Pauli forbidden states in the $S$ and $D$ waves. The direct orthogonalization method is applied for the elimination of the 3$alpha$-Pauli forbidden states. The effects of possible first order quantum phase transition are shown in the lowest $^{12}$C($0_1^+)$ and $^{12}$C($2_1^+)$ states from weakly bound phase to a deep phase. The ground and lowest $2^+$ states of the $^{12}$C nucleus in the deep phase are created by the critical eigen states of the Pauli projector for the $0^+$ and $2^+$ three-alpha functional spaces, respectively.



قيم البحث

اقرأ أيضاً

The ${}^{12}mathrm{C} + {}^{12}mathrm{C}$ fusion reaction plays a vital role in the explosive phenomena of the universe. The resonances in the Gamow window rule its reaction rate and products. Hence, the determination of the resonance parameters by n uclear models is indispensable as the direct measurement is not feasible. Here, for the first time, we report the resonances in the ${}^{12}mathrm{C} + {}^{12}mathrm{C}$ fusion reaction described by a full-microscopic nuclear model. The model plausibly reproduces the measured low-energy astrophysical $S$-factors and predicts the resonances in the Gamow window. Contradictory to the hindrance model, we conclude that there is no low-energy suppression of the $S$-factor.
Geometric configurations of three-$alpha$ particles in the ground- and first-excited $J^pi=0^+$ states of $^{12}$C are discussed within two types of $alpha$-cluster models which treat the Pauli principle differently. Though there are some quantitativ e differences especially in the internal region of the wave functions, equilateral triangle configurations are dominant in the ground state, while in the first excited $0^+$ state isosceles triangle configurations dominate, originating from $^8{rm Be}+alpha$ configurations.
Densities and transition densities are computed in an equilateral triangular alpha-cluster model for $^{12}$C, in which each $alpha$ particle is taken as a gaussian density distribution. The ground-state, the symmetric vibration (Hoyle state) and the asymmetric bend vibration are analyzed in a molecular approach and dissected into their components in a series of harmonic functions, revealing their intrinsic structures. The transition densities in the laboratory frame are then used to construct form-factors and to compute DWBA inelastic cross-sections for the $^{12}$C$(alpha, alpha)$ reaction. The comparison with experimental data indicates that the simple geometrical model with rotations and vibrations gives a reliable description of reactions where $alpha$-cluster degrees of freedom are involved.
The molecular algebraic model based on three and four alpha clusters is used to describe the inelastic scattering of alpha particles populating low-lying states in $^{12}$C and $^{16}$O. Optical potentials and inelastic formfactors are obtained by fo lding densities and transition densities obtained within the molecular model. One-step and multi-step processes can be included in the reaction mechanism calculation. In spite of the simplicity of the approach the molecular model with rotations and vibrations provides a reliable description of reactions where $alpha$-cluster degrees of freedom are involved and good results are obtained for the excitation of several low-lying states. Within the same model we briefly discuss the expected selection rules for the $alpha$-transfer reactions from $^{12}$C and $^{16}$O.
72 - N.T. Zhang , X.Y. Wang , H. Chen 2019
We use an underground counting lab with an extremely low background to perform an activity measurement for the $^{12}$C+$^{13}$C system with energies down to $Erm_{c.m.}$=2.323 MeV, at which the $^{12}$C($^{13}$C,$p$)$^{24}$Na cross section is found to be 0.22(7) nb. The $^{12}$C+$^{13}$C fusion cross section is derived with a statistical model calibrated using experimental data. Our new result of the $^{12}$C+$^{13}$C fusion cross section is the first decisive evidence in the carbon isotope systems which rules out the existence of the astrophysical S-factor maximum predicted by the phenomenological hindrance model, while confirming the rising trend of the S-factor towards lower energies predicted by other models, such as CC-M3Y+Rep, DC-TDHF, KNS, SPP and ESW. After normalizing the model predictions with our data, a more reliable upper limit is established for the $^{12}$C+$^{12}$C fusion cross sections at stellar energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا