ترغب بنشر مسار تعليمي؟ اضغط هنا

Differentiable Multiple Shooting Layers

339   0   0.0 ( 0 )
 نشر من قبل Stefano Massaroli
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We detail a novel class of implicit neural models. Leveraging time-parallel methods for differential equations, Multiple Shooting Layers (MSLs) seek solutions of initial value problems via parallelizable root-finding algorithms. MSLs broadly serve as drop-in replacements for neural ordinary differential equations (Neural ODEs) with improved efficiency in number of function evaluations (NFEs) and wall-clock inference time. We develop the algorithmic framework of MSLs, analyzing the different choices of solution methods from a theoretical and computational perspective. MSLs are showcased in long horizon optimal control of ODEs and PDEs and as latent models for sequence generation. Finally, we investigate the speedups obtained through application of MSL inference in neural controlled differential equations (Neural CDEs) for time series classification of medical data.



قيم البحث

اقرأ أيضاً

Recent work has shown how to embed differentiable optimization problems (that is, problems whose solutions can be backpropagated through) as layers within deep learning architectures. This method provides a useful inductive bias for certain problems, but existing software for differentiable optimization layers is rigid and difficult to apply to new settings. In this paper, we propose an approach to differentiating through disciplined convex programs, a subclass of convex optimization problems used by domain-specific languages (DSLs) for convex optimization. We introduce disciplined parametrized programming, a subset of disciplined convex programming, and we show that every disciplined parametrized program can be represented as the composition of an affine map from parameters to problem data, a solver, and an affine map from the solvers solution to a solution of the original problem (a new form we refer to as affine-solver-affine form). We then demonstrate how to efficiently differentiate through each of these components, allowing for end-to-end analytical differentiation through the entire convex program. We implement our methodology in version 1.1 of CVXPY, a popular Python-embedded DSL for convex optimization, and additionally implement differentiable layers for disciplined convex programs in PyTorch and TensorFlow 2.0. Our implementation significantly lowers the barrier to using convex optimization problems in differentiable programs. We present applications in linear machine learning models and in stochastic control, and we show that our layer is competitive (in execution time) compared to specialized differentiable solvers from past work.
The structure of many real-world systems is best captured by networks consisting of several interaction layers. Understanding how a multi-layered structure of connections affects the synchronization properties of dynamical systems evolving on top of it is a highly relevant endeavour in mathematics and physics, and has potential applications to several societally relevant topics, such as power grids engineering and neural dynamics. We propose a general framework to assess stability of the synchronized state in networks with multiple interaction layers, deriving a necessary condition that generalizes the Master Stability Function approach. We validate our method applying it to a network of Rossler oscillators with a double layer of interactions, and show that highly rich phenomenology emerges. This includes cases where the stability of synchronization can be induced even if both layers would have individually induced unstable synchrony, an effect genuinely due to the true multi-layer structure of the interactions amongst the units in the network.
Consider a learning algorithm, which involves an internal call to an optimization routine such as a generalized eigenvalue problem, a cone programming problem or even sorting. Integrating such a method as a layer(s) within a trainable deep neural net work (DNN) in an efficient and numerically stable way is not straightforward -- for instance, only recently, strategies have emerged for eigendecomposition and differentiable sorting. We propose an efficient and differentiable solver for general linear programming problems which can be used in a plug and play manner within DNNs as a layer. Our development is inspired by a fascinating but not widely used link between dynamics of slime mold (physarum) and optimization schemes such as steepest descent. We describe our development and show the use of our solver in a video segmentation task and meta-learning for few-shot learning. We review the existing results and provide a technical analysis describing its applicability for our use cases. Our solver performs comparably with a customized projected gradient descent method on the first task and outperforms the differentiable CVXPY-SCS solver on the second task. Experiments show that our solver converges quickly without the need for a feasible initial point. Our proposal is easy to implement and can easily serve as layers whenever a learning procedure needs a fast approximate solution to a LP, within a larger network.
Trust region methods are a popular tool in reinforcement learning as they yield robust policy updates in continuous and discrete action spaces. However, enforcing such trust regions in deep reinforcement learning is difficult. Hence, many approaches, such as Trust Region Policy Optimization (TRPO) and Proximal Policy Optimization (PPO), are based on approximations. Due to those approximations, they violate the constraints or fail to find the optimal solution within the trust region. Moreover, they are difficult to implement, often lack sufficient exploration, and have been shown to depend on seemingly unrelated implementation choices. In this work, we propose differentiable neural network layers to enforce trust regions for deep Gaussian policies via closed-form projections. Unlike existing methods, those layers formalize trust regions for each state individually and can complement existing reinforcement learning algorithms. We derive trust region projections based on the Kullback-Leibler divergence, the Wasserstein L2 distance, and the Frobenius norm for Gaussian distributions. We empirically demonstrate that those projection layers achieve similar or better results than existing methods while being almost agnostic to specific implementation choices. The code is available at https://git.io/Jthb0.
In this paper, we propose a numerical method to solve the classic $L^2$-optimal transport problem. Our algorithm is based on use of multiple shooting, in combination with a continuation procedure, to solve the boundary value problem associated to the transport problem. We exploit the viewpoint of Wasserstein Hamiltonian flow with initial and target densities, and our method is designed to retain the underlying Hamiltonian structure. Several numerical examples are presented to illustrate the performance of the method.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا