ترغب بنشر مسار تعليمي؟ اضغط هنا

DSelect-k: Differentiable Selection in the Mixture of Experts with Applications to Multi-Task Learning

120   0   0.0 ( 0 )
 نشر من قبل Hussein Hazimeh
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The Mixture-of-experts (MoE) architecture is showing promising results in multi-task learning (MTL) and in scaling high-capacity neural networks. State-of-the-art MoE models use a trainable sparse gate to select a subset of the experts for each input example. While conceptually appealing, existing sparse gates, such as Top-k, are not smooth. The lack of smoothness can lead to convergence and statistical performance issues when training with gradient-based methods. In this paper, we develop DSelect-k: the first, continuously differentiable and sparse gate for MoE, based on a novel binary encoding formulation. Our gate can be trained using first-order methods, such as stochastic gradient descent, and offers explicit control over the number of experts to select. We demonstrate the effectiveness of DSelect-k in the context of MTL, on both synthetic and real datasets with up to 128 tasks. Our experiments indicate that MoE models based on DSelect-k can achieve statistically significant improvements in predictive and expert selection performance. Notably, on a real-world large-scale recommender system, DSelect-k achieves over 22% average improvement in predictive performance compared to the Top-k gate. We provide an open-source TensorFlow implementation of our gate.

قيم البحث

اقرأ أيضاً

Stochastic approximation, a data-driven approach for finding the fixed point of an unknown operator, provides a unified framework for treating many problems in stochastic optimization and reinforcement learning. Motivated by a growing interest in mul ti-agent and multi-task learning, we consider in this paper a decentralized variant of stochastic approximation. A network of agents, each with their own unknown operator and data observations, cooperatively find the fixed point of the aggregate operator. The agents work by running a local stochastic approximation algorithm using noisy samples from their operators while averaging their iterates with their neighbors on a decentralized communication graph. Our main contribution provides a finite-time analysis of this decentralized stochastic approximation algorithm and characterizes the impacts of the underlying communication topology between agents. Our model for the data observed at each agent is that it is sampled from a Markov processes; this lack of independence makes the iterates biased and (potentially) unbounded. Under mild assumptions on the Markov processes, we show that the convergence rate of the proposed methods is essentially the same as if the samples were independent, differing only by a log factor that represents the mixing time of the Markov process. We also present applications of the proposed method on a number of interesting learning problems in multi-agent systems, including a decentralized variant of Q-learning for solving multi-task reinforcement learning.
fMRI semantic category understanding using linguistic encoding models attempt to learn a forward mapping that relates stimuli to the corresponding brain activation. Classical encoding models use linear multi-variate methods to predict the brain activ ation (all voxels) given the stimulus. However, these methods essentially assume multiple regions as one large uniform region or several independent regions, ignoring connections among them. In this paper, we present a mixture of experts-based model where a group of experts captures brain activity patterns related to particular regions of interest (ROI) and also show the discrimination across different experts. The model is trained word stimuli encoded as 25-dimensional feature vectors as input and the corresponding brain responses as output. Given a new word (25-dimensional feature vector), it predicts the entire brain activation as the linear combination of multiple experts brain activations. We argue that each expert learns a certain region of brain activations corresponding to its category of words, which solves the problem of identifying the regions with a simple encoding model. We showcase that proposed mixture of experts-based model indeed learns region-based experts to predict the brain activations with high spatial accuracy.
Many problems in machine learning rely on multi-task learning (MTL), in which the goal is to solve multiple related machine learning tasks simultaneously. MTL is particularly relevant for privacy-sensitive applications in areas such as healthcare, fi nance, and IoT computing, where sensitive data from multiple, varied sources are shared for the purpose of learning. In this work, we formalize notions of task-level privacy for MTL via joint differential privacy(JDP), a relaxation of differential privacy for mechanism design and distributed optimization. We then propose an algorithm for mean-regularized MTL, an objective commonly used for applications in personalized federated learning, subject to JDP. We analyze our objective and solver, providing certifiable guarantees on both privacy and utility. Empirically, we find that our method allows for improved privacy/utility trade-offs relative to global baselines across common federated learning benchmarks.
In this paper, we propose a novel mixture of expert architecture for learning polyhedral classifiers. We learn the parameters of the classifierusing an expectation maximization algorithm. Wederive the generalization bounds of the proposedapproach. Th rough an extensive simulation study, we show that the proposed method performs comparably to other state-of-the-art approaches.
Although model-agnostic meta-learning (MAML) is a very successful algorithm in meta-learning practice, it can have high computational cost because it updates all model parameters over both the inner loop of task-specific adaptation and the outer-loop of meta initialization training. A more efficient algorithm ANIL (which refers to almost no inner loop) was proposed recently by Raghu et al. 2019, which adapts only a small subset of parameters in the inner loop and thus has substantially less computational cost than MAML as demonstrated by extensive experiments. However, the theoretical convergence of ANIL has not been studied yet. In this paper, we characterize the convergence rate and the computational complexity for ANIL under two representative inner-loop loss geometries, i.e., strongly-convexity and nonconvexity. Our results show that such a geometric property can significantly affect the overall convergence performance of ANIL. For example, ANIL achieves a faster convergence rate for a strongly-convex inner-loop loss as the number $N$ of inner-loop gradient descent steps increases, but a slower convergence rate for a nonconvex inner-loop loss as $N$ increases. Moreover, our complexity analysis provides a theoretical quantification on the improved efficiency of ANIL over MAML. The experiments on standard few-shot meta-learning benchmarks validate our theoretical findings.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا