ترغب بنشر مسار تعليمي؟ اضغط هنا

Private Multi-Task Learning: Formulation and Applications to Federated Learning

141   0   0.0 ( 0 )
 نشر من قبل Shengyuan Hu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Many problems in machine learning rely on multi-task learning (MTL), in which the goal is to solve multiple related machine learning tasks simultaneously. MTL is particularly relevant for privacy-sensitive applications in areas such as healthcare, finance, and IoT computing, where sensitive data from multiple, varied sources are shared for the purpose of learning. In this work, we formalize notions of task-level privacy for MTL via joint differential privacy(JDP), a relaxation of differential privacy for mechanism design and distributed optimization. We then propose an algorithm for mean-regularized MTL, an objective commonly used for applications in personalized federated learning, subject to JDP. We analyze our objective and solver, providing certifiable guarantees on both privacy and utility. Empirically, we find that our method allows for improved privacy/utility trade-offs relative to global baselines across common federated learning benchmarks.



قيم البحث

اقرأ أيضاً

227 - Sudipan Saha , Tahir Ahmad 2020
Development of Artificial Intelligence (AI) is inherently tied to the development of data. However, in most industries data exists in form of isolated islands, with limited scope of sharing between different organizations. This is an hindrance to the further development of AI. Federated learning has emerged as a possible solution to this problem in the last few years without compromising user privacy. Among different variants of the federated learning, noteworthy is federated transfer learning (FTL) that allows knowledge to be transferred across domains that do not have many overlapping features and users. In this work we provide a comprehensive survey of the existing works on this topic. In more details, we study the background of FTL and its different existing applications. We further analyze FTL from privacy and machine learning perspective.
While rich medical datasets are hosted in hospitals distributed across the world, concerns on patients privacy is a barrier against using such data to train deep neural networks (DNNs) for medical diagnostics. We propose Dopamine, a system to train D NNs on distributed datasets, which employs federated learning (FL) with differentially-private stochastic gradient descent (DPSGD), and, in combination with secure aggregation, can establish a better trade-off between differential privacy (DP) guarantee and DNNs accuracy than other approaches. Results on a diabetic retinopathy~(DR) task show that Dopamine provides a DP guarantee close to the centralized training counterpart, while achieving a better classification accuracy than FL with parallel DP where DPSGD is applied without coordination. Code is available at https://github.com/ipc-lab/private-ml-for-health.
137 - Ruixuan Liu , Yang Cao , Hong Chen 2020
Federated Learning (FL) is a promising machine learning paradigm that enables the analyzer to train a model without collecting users raw data. To ensure users privacy, differentially private federated learning has been intensively studied. The existi ng works are mainly based on the textit{curator model} or textit{local model} of differential privacy. However, both of them have pros and cons. The curator model allows greater accuracy but requires a trusted analyzer. In the local model where users randomize local data before sending them to the analyzer, a trusted analyzer is not required but the accuracy is limited. In this work, by leveraging the textit{privacy amplification} effect in the recently proposed shuffle model of differential privacy, we achieve the best of two worlds, i.e., accuracy in the curator model and strong privacy without relying on any trusted party. We first propose an FL framework in the shuffle model and a simple protocol (SS-Simple) extended from existing work. We find that SS-Simple only provides an insufficient privacy amplification effect in FL since the dimension of the model parameter is quite large. To solve this challenge, we propose an enhanced protocol (SS-Double) to increase the privacy amplification effect by subsampling. Furthermore, for boosting the utility when the model size is greater than the user population, we propose an advanced protocol (SS-Topk) with gradient sparsification techniques. We also provide theoretical analysis and numerical evaluations of the privacy amplification of the proposed protocols. Experiments on real-world dataset validate that SS-Topk improves the testing accuracy by 60.7% than the local model based FL.
In multi-task learning several related tasks are considered simultaneously, with the hope that by an appropriate sharing of information across tasks, each task may benefit from the others. In the context of learning linear functions for supervised cl assification or regression, this can be achieved by including a priori information about the weight vectors associated with the tasks, and how they are expected to be related to each other. In this paper, we assume that tasks are clustered into groups, which are unknown beforehand, and that tasks within a group have similar weight vectors. We design a new spectral norm that encodes this a priori assumption, without the prior knowledge of the partition of tasks into groups, resulting in a new convex optimization formulation for multi-task learning. We show in simulations on synthetic examples and on the IEDB MHC-I binding dataset, that our approach outperforms well-known convex methods for multi-task learning, as well as related non convex methods dedicated to the same problem.
Federated learning (FL) is a distributed learning paradigm in which many clients with heterogeneous, unbalanced, and often sensitive local data, collaborate to learn a model. Local Differential Privacy (LDP) provides a strong guarantee that each clie nts data cannot be leaked during and after training, without relying on a trusted third party. While LDP is often believed to be too stringent to allow for satisfactory utility, our paper challenges this belief. We consider a general setup with unbalanced, heterogeneous data, disparate privacy needs across clients, and unreliable communication, where a random number/subset of clients is available each round. We propose three LDP algorithms for smooth (strongly) convex FL; each are noisy variations of distributed minibatch SGD. One is accelerated and one involves novel time-varying noise, which we use to obtain the first non-trivial LDP excess risk bound for the fully general non-i.i.d. FL problem. Specializing to i.i.d. clients, our risk bounds interpolate between the best known and/or optimal bounds in the centralized setting and the cross-device setting, where each client represents just one persons data. Furthermore, we show that in certain regimes, our convergence rate (nearly) matches the corresponding non-private lower bound or outperforms state of the art non-private algorithms (``privacy for free). Finally, we validate our theoretical results and illustrate the practical utility of our algorithm with numerical experiments.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا