ترغب بنشر مسار تعليمي؟ اضغط هنا

One- and two-dimensional photonic crystal micro-cavities in single crystal diamond

348   0   0.0 ( 0 )
 نشر من قبل Laura Kipfstuhl
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The development of solid-state photonic quantum technologies is of great interest for fundamental studies of light-matter interactions and quantum information science. Diamond has turned out to be an attractive material for integrated quantum information processing due to the extraordinary properties of its colour centres enabling e.g. bright single photon emission and spin quantum bits. To control emitted photons and to interconnect distant quantum bits, micro-cavities directly fabricated in the diamond material are desired. However, the production of photonic devices in high-quality diamond has been a challenge so far. Here we present a method to fabricate one- and two-dimensional photonic crystal micro-cavities in single-crystal diamond, yielding quality factors up to 700. Using a post-processing etching technique, we tune the cavity modes into resonance with the zero phonon line of an ensemble of silicon-vacancy centres and measure an intensity enhancement by a factor of 2.8. The controlled coupling to small mode volume photonic crystal cavities paves the way to larger scale photonic quantum devices based on single-crystal diamond.



قيم البحث

اقرأ أيضاً

Color centers in diamond are promising spin qubits for quantum computing and quantum networking. In photon-mediated entanglement distribution schemes, the efficiency of the optical interface ultimately determines the scalability of such systems. Nano -scale optical cavities coupled to emitters constitute a robust spin-photon interface that can increase spontaneous emission rates and photon extraction efficiencies. In this work, we introduce the fabrication of 2D photonic crystal slab nanocavities with high quality factors and cubic wavelength mode volumes -- directly in bulk diamond. This planar platform offers scalability and considerably expands the toolkit for classical and quantum nanophotonics in diamond.
We demonstrate two-dimensional photonic crystal cavities operating at telecommunication wavelengths in a single-crystal diamond membrane. We use a high-optical-quality and thin (~ 300 nm) diamond membrane, supported by a polycrystalline diamond frame , to realize fully suspended two-dimensional photonic crystal cavities with a high theoretical quality factor of ~ $8times10^6$ and a relatively small mode volume of ~2$({lambda}/n)^3$. The cavities are fabricated in the membrane using electron-beam lithography and vertical dry etching. We observe cavity resonances over a wide wavelength range spanning the telecommunication O- and S-bands (1360 nm-1470 nm) with Q factors of up to ~1800. Our method offers a new direction for on-chip diamond nanophotonic applications in the telecommunication-wavelength range.
Deterministic coupling of single solid-state emitters to nanocavities is the key for integrated quantum information devices. We here fabricate a photonic crystal cavity around a preselected single silicon-vacancy color center in diamond and demonstra te modification of the emitters internal population dynamics and radiative quantum efficiency. The controlled, room-temperature cavity coupling gives rise to a resonant Purcell enhancement of the zero-phonon transition by a factor of 19, coming along with a 2.5-fold reduction of the emitters lifetime.
We demonstrate room temperature visible wavelength photoluminescence from In0.5Ga0.5As quantum dots embedded in a GaP membrane. Time-resolved above band photoluminescence measurements of quantum dot emission show a biexpontential decay with lifetimes of ~200 ps. We fabricate photonic crystal cavities which provide enhanced outcoupling of quantum dot emission, allowing the observation of narrow lines indicative of single quantum dot emission. This materials system is compatible with monolithic integration on Si, and is promising for high efficiency detection of single quantum dot emission as well as optoelectronic devices emitting at visible wavelengths.
We propose an experiment to generate deterministic entanglement between separate nitrogen vacancy (NV) centers mediated by the mode of a photonic crystal cavity. Using numerical simulations the applicability and robustness of the entanglement operati on to parameter regimes achievable with present technology is investigated. We find that even with moderate cavity Q-factors of $10^{4}$ a concurrence of $c>0.6$ can be achieved within a time of $t_{max}approx150$~ns, while Q-factors of $10^{5}$ promise $c>0.8$. Most importantly, the investigated scheme is relative insensitive to spectral diffusion and differences between the optical transitions frequencies of the used NV centers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا