ترغب بنشر مسار تعليمي؟ اضغط هنا

A Review of Machine Learning Classification Using Quantum Annealing for Real-world Applications

276   0   0.0 ( 0 )
 نشر من قبل Himanshu Thapliyal
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Optimizing the training of a machine learning pipeline helps in reducing training costs and improving model performance. One such optimizing strategy is quantum annealing, which is an emerging computing paradigm that has shown potential in optimizing the training of a machine learning model. The implementation of a physical quantum annealer has been realized by D-Wave systems and is available to the research community for experiments. Recent experimental results on a variety of machine learning applications using quantum annealing have shown interesting results where the performance of classical machine learning techniques is limited by limited training data and high dimensional features. This article explores the application of D-Waves quantum annealer for optimizing machine learning pipelines for real-world classification problems. We review the application domains on which a physical quantum annealer has been used to train machine learning classifiers. We discuss and analyze the experiments performed on the D-Wave quantum annealer for applications such as image recognition, remote sensing imagery, computational biology, and particle physics. We discuss the possible advantages and the problems for which quantum annealing is likely to be advantageous over classical computation.



قيم البحث

اقرأ أيضاً

Although cyberattacks on machine learning (ML) production systems can be destructive, many industry practitioners are ill equipped, lacking tactical and strategic tools that would allow them to analyze, detect, protect against, and respond to cyberat tacks targeting their ML-based systems. In this paper, we take a significant step toward securing ML production systems by integrating these systems and their vulnerabilities into cybersecurity risk assessment frameworks. Specifically, we performed a comprehensive threat analysis of ML production systems and developed an extension to the MulVAL attack graph generation and analysis framework to incorporate cyberattacks on ML production systems. Using the proposed extension, security practitioners can apply attack graph analysis methods in environments that include ML components, thus providing security experts with a practical tool for evaluating the impact and quantifying the risk of a cyberattack targeting an ML production system.
We present a real-world application that uses a quantum computer. Specifically, we train a RBM using QA for cybersecurity applications. The D-Wave 2000Q has been used to implement QA. RBMs are trained on the ISCX data, which is a benchmark dataset fo r cybersecurity. For comparison, RBMs are also trained using CD. CD is a commonly used method for RBM training. Our analysis of the ISCX data shows that the dataset is imbalanced. We present two different schemes to balance the training dataset before feeding it to a classifier. The first scheme is based on the undersampling of benign instances. The imbalanced training dataset is divided into five sub-datasets that are trained separately. A majority voting is then performed to get the result. Our results show the majority vote increases the classification accuracy up from 90.24% to 95.68%, in the case of CD. For the case of QA, the classification accuracy increases from 74.14% to 80.04%. In the second scheme, a RBM is used to generate synthetic data to balance the training dataset. We show that both QA and CD-trained RBM can be used to generate useful synthetic data. Balanced training data is used to evaluate several classifiers. Among the classifiers investigated, K-Nearest Neighbor (KNN) and Neural Network (NN) perform better than other classifiers. They both show an accuracy of 93%. Our results show a proof-of-concept that a QA-based RBM can be trained on a 64-bit binary dataset. The illustrative example suggests the possibility to migrate many practical classification problems to QA-based techniques. Further, we show that synthetic data generated from a RBM can be used to balance the original dataset.
Quantum computers are expected to surpass the computational capabilities of classical computers during this decade, and achieve disruptive impact on numerous industry sectors, particularly finance. In fact, finance is estimated to be the first indust ry sector to benefit from Quantum Computing not only in the medium and long terms, but even in the short term. This review paper presents the state of the art of quantum algorithms for financial applications, with particular focus to those use cases that can be solved via Machine Learning.
Building robust deep learning-based models requires large quantities of diverse training data. In this study, we investigate the use of federated learning (FL) to build medical imaging classification models in a real-world collaborative setting. Seve n clinical institutions from across the world joined this FL effort to train a model for breast density classification based on Breast Imaging, Reporting & Data System (BI-RADS). We show that despite substantial differences among the datasets from all sites (mammography system, class distribution, and data set size) and without centralizing data, we can successfully train AI models in federation. The results show that models trained using FL perform 6.3% on average better than their counterparts trained on an institutes local data alone. Furthermore, we show a 45.8% relative improvement in the models generalizability when evaluated on the other participating sites testing data.
We introduce diagrammatic differentiation for tensor calculus by generalising the dual number construction from rigs to monoidal categories. Applying this to ZX diagrams, we show how to calculate diagrammatically the gradient of a linear map with res pect to a phase parameter. For diagrams of parametrised quantum circuits, we get the well-known parameter-shift rule at the basis of many variational quantum algorithms. We then extend our method to the automatic differentation of hybrid classical-quantum circuits, using diagrams with bubbles to encode arbitrary non-linear operators. Moreover, diagrammatic differentiation comes with an open-source implementation in DisCoPy, the Python library for monoidal categories. Diagrammatic gradients of classical-quantum circuits can then be simplified using the PyZX library and executed on quantum hardware via the tket compiler. This opens the door to many practical applications harnessing both the structure of string diagrams and the computational power of quantum machine learning.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا