ترغب بنشر مسار تعليمي؟ اضغط هنا

A Framework for Evaluating the Cybersecurity Risk of Real World, Machine Learning Production Systems

88   0   0.0 ( 0 )
 نشر من قبل Asaf Shabtai
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Although cyberattacks on machine learning (ML) production systems can be destructive, many industry practitioners are ill equipped, lacking tactical and strategic tools that would allow them to analyze, detect, protect against, and respond to cyberattacks targeting their ML-based systems. In this paper, we take a significant step toward securing ML production systems by integrating these systems and their vulnerabilities into cybersecurity risk assessment frameworks. Specifically, we performed a comprehensive threat analysis of ML production systems and developed an extension to the MulVAL attack graph generation and analysis framework to incorporate cyberattacks on ML production systems. Using the proposed extension, security practitioners can apply attack graph analysis methods in environments that include ML components, thus providing security experts with a practical tool for evaluating the impact and quantifying the risk of a cyberattack targeting an ML production system.



قيم البحث

اقرأ أيضاً

Adversarial attacks for machine learning models have become a highly studied topic both in academia and industry. These attacks, along with traditional security threats, can compromise confidentiality, integrity, and availability of organizations ass ets that are dependent on the usage of machine learning models. While it is not easy to predict the types of new attacks that might be developed over time, it is possible to evaluate the risks connected to using machine learning models and design measures that help in minimizing these risks. In this paper, we outline a novel framework to guide the risk management process for organizations reliant on machine learning models. First, we define sets of evaluation factors (EFs) in the data domain, model domain, and security controls domain. We develop a method that takes the asset and task importance, sets the weights of EFs contribution to confidentiality, integrity, and availability, and based on implementation scores of EFs, it determines the overall security state in the organization. Based on this information, it is possible to identify weak links in the implemented security measures and find out which measures might be missing completely. We believe our framework can help in addressing the security issues related to usage of machine learning models in organizations and guide them in focusing on the adequate security measures to protect their assets.
There is a lack of scientific testing of commercially available malware detectors, especially those that boast accurate classification of never-before-seen (i.e., zero-day) files using machine learning (ML). The result is that the efficacy and gaps a mong the available approaches are opaque, inhibiting end users from making informed network security decisions and researchers from targeting gaps in current detectors. In this paper, we present a scientific evaluation of four market-leading malware detection tools to assist an organization with two primary questions: (Q1) To what extent do ML-based tools accurately classify never-before-seen files without sacrificing detection ability on known files? (Q2) Is it worth purchasing a network-level malware detector to complement host-based detection? We tested each tool against 3,536 total files (2,554 or 72% malicious, 982 or 28% benign) including over 400 zero-day malware, and tested with a variety of file types and protocols for delivery. We present statistical results on detection time and accuracy, consider complementary analysis (using multiple tools together), and provide two novel applications of a recent cost-benefit evaluation procedure by Iannaconne & Bridges that incorporates all the above metrics into a single quantifiable cost. While the ML-based tools are more effective at detecting zero-day files and executables, the signature-based tool may still be an overall better option. Both network-based tools provide substantial (simulated) savings when paired with either host tool, yet both show poor detection rates on protocols other than HTTP or SMTP. Our results show that all four tools have near-perfect precision but alarmingly low recall, especially on file types other than executables and office files -- 37% of malware tested, including all polyglot files, were undetected.
Machine learning techniques are currently used extensively for automating various cybersecurity tasks. Most of these techniques utilize supervised learning algorithms that rely on training the algorithm to classify incoming data into different catego ries, using data encountered in the relevant domain. A critical vulnerability of these algorithms is that they are susceptible to adversarial attacks where a malicious entity called an adversary deliberately alters the training data to misguide the learning algorithm into making classification errors. Adversarial attacks could render the learning algorithm unsuitable to use and leave critical systems vulnerable to cybersecurity attacks. Our paper provides a detailed survey of the state-of-the-art techniques that are used to make a machine learning algorithm robust against adversarial attacks using the computational framework of game theory. We also discuss open problems and challenges and possible directions for further research that would make deep machine learning-based systems more robust and reliable for cybersecurity tasks.
Optimizing the training of a machine learning pipeline helps in reducing training costs and improving model performance. One such optimizing strategy is quantum annealing, which is an emerging computing paradigm that has shown potential in optimizing the training of a machine learning model. The implementation of a physical quantum annealer has been realized by D-Wave systems and is available to the research community for experiments. Recent experimental results on a variety of machine learning applications using quantum annealing have shown interesting results where the performance of classical machine learning techniques is limited by limited training data and high dimensional features. This article explores the application of D-Waves quantum annealer for optimizing machine learning pipelines for real-world classification problems. We review the application domains on which a physical quantum annealer has been used to train machine learning classifiers. We discuss and analyze the experiments performed on the D-Wave quantum annealer for applications such as image recognition, remote sensing imagery, computational biology, and particle physics. We discuss the possible advantages and the problems for which quantum annealing is likely to be advantageous over classical computation.
Machine learning (ML), especially deep learning (DL) techniques have been increasingly used in anomaly-based network intrusion detection systems (NIDS). However, ML/DL has shown to be extremely vulnerable to adversarial attacks, especially in such se curity-sensitive systems. Many adversarial attacks have been proposed to evaluate the robustness of ML-based NIDSs. Unfortunately, existing attacks mostly focused on feature-space and/or white-box attacks, which make impractical assumptions in real-world scenarios, leaving the study on practical gray/black-box attacks largely unexplored. To bridge this gap, we conduct the first systematic study of the gray/black-box traffic-space adversarial attacks to evaluate the robustness of ML-based NIDSs. Our work outperforms previous ones in the following aspects: (i) practical-the proposed attack can automatically mutate original traffic with extremely limited knowledge and affordable overhead while preserving its functionality; (ii) generic-the proposed attack is effective for evaluating the robustness of various NIDSs using diverse ML/DL models and non-payload-based features; (iii) explainable-we propose an explanation method for the fragile robustness of ML-based NIDSs. Based on this, we also propose a defense scheme against adversarial attacks to improve system robustness. We extensively evaluate the robustness of various NIDSs using diverse feature sets and ML/DL models. Experimental results show our attack is effective (e.g., >97% evasion rate in half cases for Kitsune, a state-of-the-art NIDS) with affordable execution cost and the proposed defense method can effectively mitigate such attacks (evasion rate is reduced by >50% in most cases).

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا