ﻻ يوجد ملخص باللغة العربية
Well-posedness and uniform-in-time boundedness of classical solutions are investigated for a three-component parabolic system which describes the dynamics of a population of cells interacting with a chemoattractant and a nutrient. The former induces a chemotactic bias in the diffusive motion of the cells and is accounted for by a density-suppressed motility. Well-posedness is first established for generic positive and non-increasing motility functions vanishing at infinity. Growth conditions on the motility function guaranteeing the uniform-in-time boundedness of solutions are next identified. Finally, for sublinearly decaying motility functions, convergence to a spatially homogeneous steady state is shown, with an exponential rate for consumption rates behaving linearly near zero.
This paper deals with a boundary-value problem in three-dimensional smooth bounded convex domains for the coupled chemotaxis-Stokes system with slow $p$-Laplacian diffusion begin{equation} onumber left{ begin{aligned} &n_t+ucdot abla n= ablacdo
This paper investigates a high-dimensional chemotaxis system with consumption of chemoattractant begin{eqnarray*} left{begin{array}{l} u_t=Delta u- ablacdot(u abla v), v_t=Delta v-uv, end{array}right. end{eqnarray*} under homogeneous boundary conditi
In this paper, we study a semilinear system involving the curl operator in a bounded and convex domain in $R^3$, which comes from the steady-state approximation for Bean critical-state model for type-II superconductors. We show the existence and the
In this paper, we study the active hydrodynamics, described in the Q-tensor liquid crystal framework. We prove the existence of global weak solutions in dimension two and three, with suitable initial datas. By using Littlewood-Paley decomposition, we
We consider a degenerate chemotaxis model with two-species and two-stimuli in dimension $dgeq 3$ and find two critical curves intersecting at one same point which separate the global existence and blow up of weak solutions to the problem. More precis