ترغب بنشر مسار تعليمي؟ اضغط هنا

Global boundedness of the curl for a p-curl system in convex domains

82   0   0.0 ( 0 )
 نشر من قبل Hongjin Wu
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study a semilinear system involving the curl operator in a bounded and convex domain in $R^3$, which comes from the steady-state approximation for Bean critical-state model for type-II superconductors. We show the existence and the $L^{infty}$ estimate for weak solutions to this system.

قيم البحث

اقرأ أيضاً

128 - Xiaoyu Zeng 2016
We study the following nonlinear critical curl-curl equation begin{equation}label{eq0.1} ablatimes ablatimes U +V(x)U=|U|^{p-2}U+ |U|^4U,quad xin mathbb{R}^3,end{equation} where $V(x)=V(r, x_3)$ with $r=sqrt{x_1^2+x_2^2}$ is 1-periodic in $x_3$ dire ction and belongs to $L^infty(R^3)$. When $0 otin sigma(-Delta+frac{1}{r^2}+V)$ and $pin(4,6)$, we prove the existence of nontrivial solution for (ref{eq0.1}), which is indeed a ground state solution in a suitable cylindrically symmetric space. Especially, if $ sigma(-Delta+frac{1}{r^2}+V)>0$, a ground state solution is obtained for any $pin(2,6)$.
We present a novel approach to adjust global image properties such as colour, saturation, and luminance using human-interpretable image enhancement curves, inspired by the Photoshop curves tool. Our method, dubbed neural CURve Layers (CURL), is desig ned as a multi-colour space neural retouching block trained jointly in three different colour spaces (HSV, CIELab, RGB) guided by a novel multi-colour space loss. The curves are fully differentiable and are trained end-to-end for different computer vision problems including photo enhancement (RGB-to-RGB) and as part of the image signal processing pipeline for image formation (RAW-to-RGB). To demonstrate the effectiveness of CURL we combine this global image transformation block with a pixel-level (local) image multi-scale encoder-decoder backbone network. In an extensive experimental evaluation we show that CURL produces state-of-the-art image quality versus recently proposed deep learning approaches in both objective and perceptual metrics, setting new state-of-the-art performance on multiple public datasets. Our code is publicly available at: https://github.com/sjmoran/CURL.
103 - Weirun Tao , Yuxiang Li 2018
This paper deals with a boundary-value problem in three-dimensional smooth bounded convex domains for the coupled chemotaxis-Stokes system with slow $p$-Laplacian diffusion begin{equation} onumber left{ begin{aligned} &n_t+ucdot abla n= ablacdo tleft(| abla n|^{p-2} abla nright)- ablacdot(n abla c), &xinOmega, t>0, &c_t+ucdot abla c=Delta c-nc,&xinOmega, t>0, &u_t=Delta u+ abla P+n ablaphi ,&xinOmega, t>0, & ablacdot u=0, &xinOmega, t>0, end{aligned} right. end{equation} where $phiin W^{2,infty}(Omega)$ is the gravitational potential. It is proved that global bounded weak solutions exist whenever $p>frac{23}{11}$ and the initial data $(n_0,c_0,u_0)$ are sufficiently regular satisfying $n_0geq 0$ and $c_0geq 0$.
In this paper, we establish a global regularity result for the optimal transport problem with the quadratic cost, where the domains may not be convex. This result is obtained by a perturbation argument, using a recent global regularity of optimal transportation in convex domains by the authors.
Edge (or Nedelec) finite elements are theoretically sound and widely used by the computational electromagnetics community. However, its implementation, specially for high order methods, is not trivial, since it involves many technicalities that are n ot properly described in the literature. To fill this gap, we provide a comprehensive description of a general implementation of edge elements of first kind within the scientific software project FEMPAR. We cover into detail how to implement arbitrary order (i.e., $p$-adaptive) elements on hexahedral and tetrahedral meshes. First, we set the three classical ingredients of the finite element definition by Ciarlet, both in the reference and the physical space: cell topologies, polynomial spaces and moments. With these ingredients, shape functions are automatically implemented by defining a judiciously chosen polynomial pre-basis that spans the local finite element space combined with a change of basis to automatically obtain a canonical basis with respect to the moments at hand. Next, we discuss global finite element spaces putting emphasis on the construction of global shape functions through oriented meshes, appropriate geometrical mappings, and equivalence classes of moments, in order to preserve the inter-element continuity of tangential components of the magnetic field. Finally, we extend the proposed methodology to generate global curl-conforming spaces on non-conforming hierarchically refined (i.e., $h$-adaptive) meshes with arbitrary order finite elements. Numerical results include experimental convergence rates to test the proposed implementation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا