ﻻ يوجد ملخص باللغة العربية
This paper investigates a high-dimensional chemotaxis system with consumption of chemoattractant begin{eqnarray*} left{begin{array}{l} u_t=Delta u- ablacdot(u abla v), v_t=Delta v-uv, end{array}right. end{eqnarray*} under homogeneous boundary conditions of Neumann type, in a bounded convex domain $Omegasubsetmathbb{R}^n~(ngeq4)$ with smooth boundary. It is proved that if initial data satisfy $u_0in C^0(overline{Omega})$ and $v_0in W^{1,q}(Omega)$ for some $q>n$, the model possesses at least one global renormalized solution.
This paper studies the following system of differential equations modeling tumor angiogenesis in a bounded smooth domain $Omega subset mathbb{R}^N$ ($N=1,2$): $$label{0} left{begin{array}{ll} p_t=Delta p- ablacdotp p(displaystylefrac alpha {1+c}
Well-posedness and uniform-in-time boundedness of classical solutions are investigated for a three-component parabolic system which describes the dynamics of a population of cells interacting with a chemoattractant and a nutrient. The former induces
We study a doubly tactic resource consumption model bess left{begin{array}{lll} u_t=tr u- ablacd(u abla w),[1mm] v_t=tr v- ablacd(v abla u)+v(1-v^{beta-1}),[1mm] w_t=tr w-(u+v)w-w+r end{array}right. eess in a smooth bounded domain $ooinR^2$ with homo
This paper investigates an incompressible chemotaxis-Navier-Stokes system with slow $p$-Laplacian diffusion begin{eqnarray} left{begin{array}{lll} n_t+ucdot abla n= ablacdot(| abla n|^{p-2} abla n)- ablacdot(nchi(c) abla c),& xinOmega, t>0, c_t+ucdot
This work considers a chemotaxis system for multi-species that includes birth or death rate terms, which implies no mass preservation of the populations. We aim to show the convergence to a $L^{infty} - $weak solutions, that is local in time, of the