ترغب بنشر مسار تعليمي؟ اضغط هنا

Addressing the Long-term Impact of ML Decisions via Policy Regret

144   0   0.0 ( 0 )
 نشر من قبل David Lindner
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Machine Learning (ML) increasingly informs the allocation of opportunities to individuals and communities in areas such as lending, education, employment, and beyond. Such decisions often impact their subjects future characteristics and capabilities in an a priori unknown fashion. The decision-maker, therefore, faces exploration-exploitation dilemmas akin to those in multi-armed bandits. Following prior work, we model communities as arms. To capture the long-term effects of ML-based allocation decisions, we study a setting in which the reward from each arm evolves every time the decision-maker pulls that arm. We focus on reward functions that are initially increasing in the number of pulls but may become (and remain) decreasing after a certain point. We argue that an acceptable sequential allocation of opportunities must take an arms potential for growth into account. We capture these considerations through the notion of policy regret, a much stronger notion than the often-studied external regret, and present an algorithm with provably sub-linear policy regret for sufficiently long time horizons. We empirically compare our algorithm with several baselines and find that it consistently outperforms them, in particular for long time horizons.

قيم البحث

اقرأ أيضاً

ML-based predictive systems are increasingly used to support decisions with a critical impact on individuals lives such as college admission, job hiring, child custody, criminal risk assessment, etc. As a result, fairness emerged as an important requ irement to guarantee that predictive systems do not discriminate against specific individuals or entire sub-populations, in particular, minorities. Given the inherent subjectivity of viewing the concept of fairness, several notions of fairness have been introduced in the literature. This paper is a survey of fairness notions that, unlike other surveys in the literature, addresses the question of which notion of fairness is most suited to a given real-world scenario and why?. Our attempt to answer this question consists in (1) identifying the set of fairness-related characteristics of the real-world scenario at hand, (2) analyzing the behavior of each fairness notion, and then (3) fitting these two elements to recommend the most suitable fairness notion in every specific setup. The results are summarized in a decision diagram that can be used by practitioners and policy makers to navigate the relatively large catalogue of fairness notions.
Policies trained via Reinforcement Learning (RL) are often needlessly complex, making them more difficult to analyse and interpret. In a run with $n$ time steps, a policy will decide $n$ times on an action to take, even when only a tiny subset of the se decisions deliver value over selecting a simple default action. Given a pre-trained policy, we propose a black-box method based on statistical fault localisation that ranks the states of the environment according to the importance of decisions made in those states. We evaluate our ranking method by creating new, simpler policies by pruning decisions identified as unimportant, and measure the impact on performance. Our experimental results on a diverse set of standard benchmarks (gridworld, CartPole, Atari games) show that in some cases less than half of the decisions made contribute to the expected reward. We furthermore show that the decisions made in the most frequently visited states are not the most important for the expected reward.
Unintended biases in machine learning (ML) models are among the major concerns that must be addressed to maintain public trust in ML. In this paper, we address process fairness of ML models that consists in reducing the dependence of models on sensit ive features, without compromising their performance. We revisit the framework FixOut that is inspired in the approach fairness through unawareness to build fairer models. We introduce several improvements such as automating the choice of FixOuts parameters. Also, FixOut was originally proposed to improve fairness of ML models on tabular data. We also demonstrate the feasibility of FixOuts workflow for models on textual data. We present several experimental results that illustrate the fact that FixOut improves process fairness on different classification settings.
A core challenge in Machine Learning is to learn to disentangle natural factors of variation in data (e.g. object shape vs. pose). A popular approach to disentanglement consists in learning to map each of these factors to distinct subspaces of a mode ls latent representation. However, this approach has shown limited empirical success to date. Here, we show that, for a broad family of transformations acting on images--encompassing simple affine transformations such as rotations and translations--this approach to disentanglement introduces topological defects (i.e. discontinuities in the encoder). Motivated by classical results from group representation theory, we study an alternative, more flexible approach to disentanglement which relies on distributed latent operators, potentially acting on the entire latent space. We theoretically and empirically demonstrate the effectiveness of this approach to disentangle affine transformations. Our work lays a theoretical foundation for the recent success of a new generation of models using distributed operators for disentanglement.
Do large datasets provide value to psychologists? Without a systematic methodology for working with such datasets, there is a valid concern that analyses will produce noise artifacts rather than true effects. In this paper, we offer a way to enable r esearchers to systematically build models and identify novel phenomena in large datasets. One traditional approach is to analyze the residuals of models---the biggest errors they make in predicting the data---to discover what might be missing from those models. However, once a dataset is sufficiently large, machine learning algorithms approximate the true underlying function better than the data, suggesting instead that the predictions of these data-driven models should be used to guide model-building. We call this approach Scientific Regret Minimization (SRM) as it focuses on minimizing errors for cases that we know should have been predictable. We demonstrate this methodology on a subset of the Moral Machine dataset, a public collection of roughly forty million moral decisions. Using SRM, we found that incorporating a set of deontological principles that capture dimensions along which groups of agents can vary (e.g. sex and age) improves a computational model of human moral judgment. Furthermore, we were able to identify and independently validate three interesting moral phenomena: criminal dehumanization, age of responsibility, and asymmetric notions of responsibility.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا