ترغب بنشر مسار تعليمي؟ اضغط هنا

Scaling up Psychology via Scientific Regret Minimization: A Case Study in Moral Decisions

83   0   0.0 ( 0 )
 نشر من قبل Mayank Agrawal
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Do large datasets provide value to psychologists? Without a systematic methodology for working with such datasets, there is a valid concern that analyses will produce noise artifacts rather than true effects. In this paper, we offer a way to enable researchers to systematically build models and identify novel phenomena in large datasets. One traditional approach is to analyze the residuals of models---the biggest errors they make in predicting the data---to discover what might be missing from those models. However, once a dataset is sufficiently large, machine learning algorithms approximate the true underlying function better than the data, suggesting instead that the predictions of these data-driven models should be used to guide model-building. We call this approach Scientific Regret Minimization (SRM) as it focuses on minimizing errors for cases that we know should have been predictable. We demonstrate this methodology on a subset of the Moral Machine dataset, a public collection of roughly forty million moral decisions. Using SRM, we found that incorporating a set of deontological principles that capture dimensions along which groups of agents can vary (e.g. sex and age) improves a computational model of human moral judgment. Furthermore, we were able to identify and independently validate three interesting moral phenomena: criminal dehumanization, age of responsibility, and asymmetric notions of responsibility.



قيم البحث

اقرأ أيضاً

How to attribute responsibility for autonomous artificial intelligence (AI) systems actions has been widely debated across the humanities and social science disciplines. This work presents two experiments ($N$=200 each) that measure peoples perceptio ns of eight different notions of moral responsibility concerning AI and human agents in the context of bail decision-making. Using real-life adapted vignettes, our experiments show that AI agents are held causally responsible and blamed similarly to human agents for an identical task. However, there was a meaningful difference in how people perceived these agents moral responsibility; human agents were ascribed to a higher degree of present-looking and forward-looking notions of responsibility than AI agents. We also found that people expect both AI and human decision-makers and advisors to justify their decisions regardless of their nature. We discuss policy and HCI implications of these findings, such as the need for explainable AI in high-stakes scenarios.
Machine Learning (ML) increasingly informs the allocation of opportunities to individuals and communities in areas such as lending, education, employment, and beyond. Such decisions often impact their subjects future characteristics and capabilities in an a priori unknown fashion. The decision-maker, therefore, faces exploration-exploitation dilemmas akin to those in multi-armed bandits. Following prior work, we model communities as arms. To capture the long-term effects of ML-based allocation decisions, we study a setting in which the reward from each arm evolves every time the decision-maker pulls that arm. We focus on reward functions that are initially increasing in the number of pulls but may become (and remain) decreasing after a certain point. We argue that an acceptable sequential allocation of opportunities must take an arms potential for growth into account. We capture these considerations through the notion of policy regret, a much stronger notion than the often-studied external regret, and present an algorithm with provably sub-linear policy regret for sufficiently long time horizons. We empirically compare our algorithm with several baselines and find that it consistently outperforms them, in particular for long time horizons.
In reinforcement learning, experience replay stores past samples for further reuse. Prioritized sampling is a promising technique to better utilize these samples. Previous criteria of prioritization include TD error, recentness and corrective feedbac k, which are mostly heuristically designed. In this work, we start from the regret minimization objective, and obtain an optimal prioritization strategy for Bellman update that can directly maximize the return of the policy. The theory suggests that data with higher hindsight TD error, better on-policiness and more accurate Q value should be assigned with higher weights during sampling. Thus most previous criteria only consider this strategy partially. We not only provide theoretical justifications for previous criteria, but also propose two new methods to compute the prioritization weight, namely ReMERN and ReMERT. ReMERN learns an error network, while ReMERT exploits the temporal ordering of states. Both methods outperform previous prioritized sampling algorithms in challenging RL benchmarks, including MuJoCo, Atari and Meta-World.
Deep neural networks (DNNs) have achieved unprecedented performance on a wide range of complex tasks, rapidly outpacing our understanding of the nature of their solutions. This has caused a recent surge of interest in methods for rendering modern neu ral systems more interpretable. In this work, we propose to address the interpretability problem in modern DNNs using the rich history of problem descriptions, theories and experimental methods developed by cognitive psychologists to study the human mind. To explore the potential value of these tools, we chose a well-established analysis from developmental psychology that explains how children learn word labels for objects, and applied that analysis to DNNs. Using datasets of stimuli inspired by the original cognitive psychology experiments, we find that state-of-the-art one shot learning models trained on ImageNet exhibit a similar bias to that observed in humans: they prefer to categorize objects according to shape rather than color. The magnitude of this shape bias varies greatly among architecturally identical, but differently seeded models, and even fluctuates within seeds throughout training, despite nearly equivalent classification performance. These results demonstrate the capability of tools from cognitive psychology for exposing hidden computational properties of DNNs, while concurrently providing us with a computational model for human word learning.
The development of AI applications is a multidisciplinary effort, involving multiple roles collaborating with the AI developers, an umbrella term we use to include data scientists and other AI-adjacent roles on the same team. During these collaborati ons, there is a knowledge mismatch between AI developers, who are skilled in data science, and external stakeholders who are typically not. This difference leads to communication gaps, and the onus falls on AI developers to explain data science concepts to their collaborators. In this paper, we report on a study including analyses of both interviews with AI developers and artifacts they produced for communication. Using the analytic lens of shared mental models, we report on the types of communication gaps that AI developers face, how AI developers communicate across disciplinary and organizational boundaries, and how they simultaneously manage issues regarding trust and expectations.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا