ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiative properties of rubidium atoms trapped in solid neon and parahydrogen

138   0   0.0 ( 0 )
 نشر من قبل Jonathan Weinstein
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is known from ensemble measurements that rubidium atoms trapped in solid parahydrogen have favorable properties for quantum sensing of magnetic fields. To use a single rubidium atom as a quantum sensor requires a technique capable of efficiently measuring the internal state of a single atom, such as laser-induced fluorescence. In this work we search for laser-induced fluorescence from ensembles of rubidium atoms trapped in solid parahydrogen and, separately, in solid neon. In parahydrogen we find no evidence of fluorescence over the range explored, and place upper limits on the radiative branching ratio. In neon, we observe laser induced fluorescence, measure the spectrum of the emitted light, and measure the excited state lifetime in the matrix. Bleaching of atoms from the excitation light is also reported.

قيم البحث

اقرأ أيضاً

Coherence time is an essential parameter for quantum sensing, quantum information, and quantum computation. In this work, we demonstrate electron spin coherence times as long as 0.1 s for an ensemble of rubidium atoms trapped in a solid parahydrogen matrix. We explore the underlying physics limiting the coherence time. The properties of these matrix isolated atoms are very promising for future applications, including quantum sensing of nuclear spins. If combined with efficient single-atom readout, this would enable NMR and magnetic resonance imaging of single molecules cotrapped with alkali-metal atom quantum sensors within a parahydrogen matrix.
We present a joint experimental and theoretical study of spin coherence properties of 39K, 85Rb, 87Rb, and 133Cs atoms trapped in a solid parahydrogen matrix. We use optical pumping to prepare the spin states of the implanted atoms and circular dichr oism to measure their spin states. Optical pumping signals show order-of-magnitude differences depending on both matrix growth conditions and atomic species. We measure the ensemble transverse relaxation times (T2*) of the spin states of the alkali-metal atoms. Different alkali species exhibit dramatically different T2* times, ranging from sub-microsecond coherence times for high mF states of 87Rb, to ~100 microseconds for 39K. These are the longest ensemble T2* times reported for an electron spin system at high densities (n > 10^16 cm^-3). To interpret these observations, we develop a theory of inhomogenous broadening of hyperfine transitions of ^2S atoms in weakly-interacting solid matrices. Our calculated ensemble transverse relaxation times agree well with experiment, and suggest ways to longer coherence times in future work.
We demonstrate a double-trap system well suited to study cold collisions between trapped ions and trapped atoms. Using Yb$^+$ ions confined in a Paul trap and Yb atoms in a magneto-optical trap, we investigate charge-exchange collisions of several is otopes for collision energies down to 400 neV (5 mK). The measured rate coefficient of $6 times 10^{-10}$ cm$^{3}$s$^{-1}$, constant over four orders of magnitude in collision energy, is in good agreement with that derived from a semiclassical Langevin model for an atomic polarizability of 143 a.u.
We have observed a distance-dependent absorption linewidth of cold $^{87}$Rb atoms close to a dielectric-vacuum interface. This is the first observation of modified radiative properties in vacuum near a dielectric surface. A cloud of cold atoms was c reated using a magneto-optical trap (MOT) and optical molasses cooling. Evanescent waves (EW) were used to observe the behavior of the atoms near the surface. We observed an increase of the absorption linewidth with up to 25% with respect to the free-space value. Approximately half the broadening can be explained by cavity-quantum electrodynamics (CQED) as an increase of the natural linewidth and inhomogeneous broadening. The remainder we attribute to local Stark shifts near the surface. By varying the characteristic EW length we have observed a distance dependence characteristic for CQED.
119 - D. Reitz , C. Sayrin , R. Mitsch 2013
We experimentally study the ground state coherence properties of cesium atoms in a nanofiber-based two-color dipole trap, localized 200 nm away from the fiber surface. Using microwave radiation to coherently drive the clock transition, we record Rams ey fringes as well as spin echo signals and infer a reversible dephasing time $T_2^ast=0.6$ ms and an irreversible dephasing time $T_2^prime=3.7$ ms. By theoretically modelling the signals, we find that, for our experimental parameters, $T_2^ast$ and $T_2^prime$ are limited by the finite initial temperature of the atomic ensemble and the heating rate, respectively. Our results represent a fundamental step towards establishing nanofiber-based traps for cold atoms as a building block in an optical fiber quantum network.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا