ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of modified radiative properties of cold atoms in vacuum near a dielectric surface

180   0   0.0 ( 0 )
 نشر من قبل Vladyslav Ivanov
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have observed a distance-dependent absorption linewidth of cold $^{87}$Rb atoms close to a dielectric-vacuum interface. This is the first observation of modified radiative properties in vacuum near a dielectric surface. A cloud of cold atoms was created using a magneto-optical trap (MOT) and optical molasses cooling. Evanescent waves (EW) were used to observe the behavior of the atoms near the surface. We observed an increase of the absorption linewidth with up to 25% with respect to the free-space value. Approximately half the broadening can be explained by cavity-quantum electrodynamics (CQED) as an increase of the natural linewidth and inhomogeneous broadening. The remainder we attribute to local Stark shifts near the surface. By varying the characteristic EW length we have observed a distance dependence characteristic for CQED.

قيم البحث

اقرأ أيضاً

We investigated non-equilibrium atomic dynamics in a moving optical lattice via observation of atomic resonance fluorescence spectrum. A three-dimensional optical lattice was generated in a phase-stabilized magneto-optical trap (MOT) and the lattice was made to move by introducing a detuning between the counter-propagating trap lasers. A non-equilibrium steady states (NESSs) of atoms was then established in the hybrid of the moving optical lattice and the surrounding MOT. A part of atoms were localized and transported in the moving optical lattice and the rest were not localized in the lattice while trapped as a cold gas in the MOT. These motional states coexisted with continuous transition between them. As the speed of the lattice increased, the population of the non-localized state increased in a stepwise fashion due to the existence of bound states at the local minima of the lattice potential. A deterministic rate-equation model for atomic populations in those motional states was introduced in order to explain the experimental results. The model calculations then well reproduced the key features of the experimental observations, confirming the existence of an NESS in the cold atom system.
A mixed system of cooled and trapped, ions and atoms, paves the way for ion assisted cold chemistry and novel many body studies. Due to the different individual trapping mechanisms, trapped atoms are significantly colder than trapped ions, therefore in the combined system, the strong binary ion$-$atom interaction results in heat flow from ions to atoms. Conversely, trapped ions can also get collisionally heated by the cold atoms, making the resulting equilibrium between ions and atoms intriguing. Here we experimentally demonstrate, Rubidium ions (Rb$^+$) cool in contact with magneto-optically trapped (MOT) Rb atoms, contrary to the general expectation of ion heating for equal ion and atom masses. The cooling mechanism is explained theoretically and substantiated with numerical simulations. The importance of resonant charge exchange (RCx) collisions, which allows swap cooling of ions with atoms, wherein a single glancing collision event brings a fast ion to rest, is discussed.
76 - S. Bux , E. Lucioni , H. Bender 2010
We have studied the interplay between disorder and cooperative scattering for single scattering limit in the presence of a driving laser. Analytical results have been derived and we have observed cooperative scattering effects in a variety of experim ents, ranging from thermal atoms in an optical dipole trap, atoms released from a dark MOT and atoms in a BEC, consistent with our theoretical predictions.
Compact cold-atom sensors depend on vacuum technology. One of the major limitations to miniaturizing these sensors are the active pumps -- typically ion pumps -- required to sustain the low pressure needed for laser cooling. Although passively pumped chambers have been proposed as a solution to this problem, technical challenges have prevented successful operation at the levels needed for cold-atom experiments. We present the first demonstration of a vacuum package successfully independent of ion pumps for more than a week; our vacuum package is capable of sustaining a cloud of cold atoms in a magneto-optical trap (MOT) for greater than 200 days using only non-evaporable getters and a rubidium dispenser. Measurements of the MOT lifetime indicate the package maintains a pressure of better than $2times10^{-7}$ Torr. This result will significantly impact the development of compact atomic sensors, including those sensitive to magnetic fields, where the absence of an ion pump will be advantageous.
We demonstrate optical transport of cold cesium atoms over millimeter-scale distances along an optical nanofiber. The atoms are trapped in a one-dimensional optical lattice formed by a two-color evanescent field surrounding the nanofiber, far red- an d blue-detuned with respect to the atomic transition. The blue-detuned field is a propagating nanofiber-guided mode while the red-detuned field is a standing-wave mode which leads to the periodic axial confinement of the atoms. Here, this standing wave is used for transporting the atoms along the nanofiber by mutually detuning the two counter-propagating fields which form the standing wave. The performance and limitations of the nanofiber-based transport are evaluated and possible applications are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا