ﻻ يوجد ملخص باللغة العربية
Dissipative structures are the result of spontaneous symmetry breaking in a dynamic open system, which is induced by either the nonlinear effect or loss fluctuations. While optical temporal dissipative solitons in nonlinear Kerr cavities has been widely studied, they are operated in a red-detuned regime that is non-trivial to access. Here, we demonstrate an emergent dissipative soliton state in optical cavities in the presence of loss fluctuations, which is accessible by self-evolution of the system and is operated in resonance. We numerically investigate both the effect of loss modulation and the effect of saturable absorption, based on a standard dissipative and Kerr-nonlinear microresonator model, and observe stable soliton states in a close-to-zero detuning region. The self-starting soliton state working in resonance is potentially of wide interest, which would not only ease the operation for ultrafast temporal soliton generation, but also imply a high conversion efficiency for soliton micro-combs.
This chapter describes the discovery and stable generation of temporal dissipative Kerr solitons in continuous-wave (CW) laser driven optical microresonators. The experimental signatures as well as the temporal and spectral characteristics of this cl
Temporal solitons in driven microresonator, fiber-resonator, and bulk enhancement cavities enable attractive optical sources for spectroscopy, communications, and metrology. Here we present theoretical and experimental observations of a new class of
We report the existence of vectorial dark dissipative solitons in optical cavities subject to a coherently injected beam. We assume that the resonator is operating in a normal dispersion regime far from any modulational instability. We show that the
Strongly interacting solitons confined to an optical resonator would offer unique capabilities for experiments in communication, computation, and sensing with light. Here we report on the discovery of soliton crystals in monolithic Kerr microresonato
The capability to store light for extended periods of time enables optical cavities to act as narrow-band optical filters, whose linewidth corresponds to the cavitys inverse energy storage time. Here, we report on nonlinear filtering of an optical pu