ترغب بنشر مسار تعليمي؟ اضغط هنا

Chirped temporal solitons in driven optical resonators

61   0   0.0 ( 0 )
 نشر من قبل Christopher Spiess
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Temporal solitons in driven microresonator, fiber-resonator, and bulk enhancement cavities enable attractive optical sources for spectroscopy, communications, and metrology. Here we present theoretical and experimental observations of a new class of temporal optical soliton characterized by pulses with large and positive chirp in normal dispersion resonators with strong spectral filtering. Numerical simulations reveal stable waveforms over a wide new range of parameters including highly chirped pulses at large drive powers. Chirped temporal solitons matching predictions are observed in experiments with normal dispersion fiber resonators strongly driven with nanosecond pulses. Scaling laws are developed and provide simple design guidelines for generating chirped temporal solitons in bulk- and micro-resonator, in addition to fiber-resonator platforms. The relationship between the chirped solutions and other stable waveforms in normal and anomalous dispersion resonators is examined. Chirped temporal solitons represent a promising new resource for frequency-comb and ultrashort-pulse generation.

قيم البحث

اقرأ أيضاً

We report the observation of surface solitons in chirped semi-infinite waveguide arrays whose waveguides exhibit exponentially decreasing refractive indices. We show that the power threshold for surface wave formation decreases with an increase of th e array chirp and that for sufficiently large chirp values linear surface modes are supported.
A coherently driven Kerr optical cavity is able to convert a continuous-wave laser to a sequence of ultrashort soliton pulses, enabling the generation of broadband and mode-locked frequency combs. Kerr cavity solitons are balanced through an energy e xchange with the driving pump field. Improving the energy conversion efficiency from the pump to the soliton is of great significance for practical applications, but remains an outstanding challenge due to a limited temporal overlap between the soliton and the pump. Here, we report the discovery of temporal Kerr solitons in mutually coupled cavities instead of a traditional single cavity. We propose a strategy for breaking the limitation of pump-to-soliton energy conversion, and connect the underlying mechanism to impedance matching in radiofrequency electronic circuits. With macro optical fiber ring cavities which share the same physical model as miniature optical microresonators, we demonstrate nearly one-order improvement of the efficiency. The results pave the way towards super-efficient soliton microcombs based on optical microresonators with ultra-high quality factors.
Dissipative structures are the result of spontaneous symmetry breaking in a dynamic open system, which is induced by either the nonlinear effect or loss fluctuations. While optical temporal dissipative solitons in nonlinear Kerr cavities has been wid ely studied, they are operated in a red-detuned regime that is non-trivial to access. Here, we demonstrate an emergent dissipative soliton state in optical cavities in the presence of loss fluctuations, which is accessible by self-evolution of the system and is operated in resonance. We numerically investigate both the effect of loss modulation and the effect of saturable absorption, based on a standard dissipative and Kerr-nonlinear microresonator model, and observe stable soliton states in a close-to-zero detuning region. The self-starting soliton state working in resonance is potentially of wide interest, which would not only ease the operation for ultrafast temporal soliton generation, but also imply a high conversion efficiency for soliton micro-combs.
We present the theory of modulation instability induced by spectrally dependent losses (optical filters) in passive driven nonlinear fiber ring resonators. Starting from an Ikeda map description of the propagation equation and boundary conditions, we derive a mean field model - a generalised Lugiato-Lefever equation - which reproduces with great accuracy the predictions of the map. The effects on instability gain and comb generation of the different control parameters such as dispersion, cavity detuning, filter spectral position and bandwidth are discussed.
Frequency combs have become a prominent research area in optics. Of particular interest as integrated comb technology are chip-scale sources, such as semiconductor lasers and microresonators, which consist of resonators embedding a nonlinear medium e ither with or without population inversion. Such active and passive cavities were so far treated distinctly. Here we propose a formal unification by introducing a general equation that describes both types of cavities. The equation also captures the physics of a hybrid device - a semiconductor ring laser with an external optical drive - in which we show the existence of temporal solitons, previously identified only in microresonators, thanks to symmetry breaking and self-localization phenomena typical of spatially-extended dissipative systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا