ﻻ يوجد ملخص باللغة العربية
Strongly interacting solitons confined to an optical resonator would offer unique capabilities for experiments in communication, computation, and sensing with light. Here we report on the discovery of soliton crystals in monolithic Kerr microresonators-spontaneously and collectively ordered ensembles of co-propagating solitons whose interactions discretize their allowed temporal separations. We unambiguously identify and characterize soliton crystals through analysis of their fingerprint optical spectra, which arise from spectral interference between the solitons. We identify a rich space of soliton crystals exhibiting crystallographic defects, and time-domain measurements directly confirm our inference of their crystal structure. The crystallization we observe is explained by long-range soliton interactions mediated by resonator mode degeneracies, and we probe the qualitative difference between soliton crystals and a soliton liquid that forms in the absence of these interactions. Our work explores the rich physics of monolithic Kerr resonators in a new regime of dense soliton occupation and offers a way to greatly increase the efficiency of Kerr combs; further, the extreme degeneracy of the configuration space of soliton crystals suggests an implementation for a robust on-chip optical buffer.
Dissipative Kerr cavity solitons (DKSs) are localized particle-like wave packets that have attracted peoples great interests in the past decades. Besides being an excellent candidate for studying nonlinear physics, DKSs can also enable the generation
We investigate the formation of dark vector localized structures in the presence of nonlinear polarization mode coupling in optical resonators subject to a coherent optical injection in the normal dispersion regime. This simple device is described by
Spontaneous emergence of self-organized patterns and their bifurcations towards a regime of complex dynamics in non-equilibrium dissipative systems is a paradigm of phase transition. Indeed, the behavior of these patterns in the highly nonlinear regi
We theoretically study the nature of parametrically driven dissipative Kerr soliton (PD-DKS) in a doubly resonant degenerate micro-optical parametric oscillator (DR-D{mu}OPO) with the cooperation of c{hi}(2) and c{hi}(3) nonlinearities. Lifting the a
The realization of spontaneous symmetry breaking (SSB) requires a system that exhibits a near perfect symmetry. SSB manifests itself through a pitchfork bifurcation, but that bifurcation is fragile, and perturbed by any asymmetry or imperfections. Co