ترغب بنشر مسار تعليمي؟ اضغط هنا

Superscattering Empowered by Bound States in the Continuum

67   0   0.0 ( 0 )
 نشر من قبل Adri\\`a Can\\'os Valero
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We uncover a novel mechanism for superscattering of subwavelength resonators closely associated with the physics of bound states in the continuum. We demonstrate that superscattering occurs as a consequence of constructive interference driven by the Friedrich-Wintgen mechanism, and it may exceed the currently established limits for the cross-section of a single open scattering channel, within the channel itself. We develop a non-Hermitian model to describe interfering resonances of quasi-normal modes to show that this effect can only occur for scatterers violating the spherical symmetry, and therefore it cannot be predicted with the classical Mie solutions. Our results reveal unusual physics of non-Hermitian systems having important implications for functional metadevices.

قيم البحث

اقرأ أيضاً

We demonstrate that rotationally symmetric chiral metasurfaces can support arbitrarily sharp resonances with the maximum optical chirality determined by precise shaping of bound states in the continuum (BICs). Being uncoupled from one circular polari sation of light and resonantly coupled to its counterpart, a metasurface hosting the chiral BIC resonance exhibits a narrow peak in the circular dichroism spectrum. We propose a realization of such chiral BIC metasurfaces based on pairs of dielectric bars and validate the concept of maximum chirality by numerical simulations
Bound states in the continuum (BICs) represent localized modes with energies embedded in the continuous spectrum of radiating waves. BICs were discovered initially as a mathematical curiosity in quantum mechanics, and more recently were employed in p hotonics. Pure mathematical bound states have infinitely-large quality factors (Q factors) and zero resonant linewidth. In optics, BICs are physically limited by a finite size, material absorption, structural disorder, and surface scattering, and they manifest themselves as the resonant states with large Q factors, also known as supercavity modes or quasi-BICs. Optical BIC resonances have been demonstrated only in extended 2D and 1D systems and have been employed for distinct applications including lasing and sensing. Optical quasi-BIC modes in individual nanoresonators have been discovered recently but they were never observed in experiment. Here, we demonstrate experimentally an isolated subwavelength nanoresonator hosting a quasi-BIC resonance. We fabricate the resonator from AlGaAs material on an engineered substrate, and couple to the quasi-BIC mode using structured light. We employ the resonator as a nonlinear nanoantenna and demonstrate record-high efficiency of second-harmonic generation. Our study brings a novel platform to resonant subwavelength photonics.
The concept of optical bound states in the continuum (BICs) underpins the existence of strongly localized waves embedded into the radiation spectrum that can enhance the electromagnetic fields in subwavelength photonic structures. Early studies of op tical BICs in waveguides and photonic crystals uncovered their topological properties, and the concept of quasi-BIC metasurfaces facilitated applications of strong light-matter interactions to biosensing, lasing, and low-order nonlinear processes. Here we employ BIC-empowered dielectric metasurfaces to generate efficiently high optical harmonics up to the 11th order. We optimize a BIC mode for the first few harmonics and observe a transition between perturbative and nonperturbative nonlinear regimes. We also suggest a general strategy for designing subwavelength structures with strong resonances and nonperturbative nonlinearities. Our work bridges the fields of perturbative and nonperturbative nonlinear optics on the subwavelength scale.
Recently emerged dielectric resonators and metasurfaces offer a low-loss platform for efficient manipulation of electromagnetic waves from microwave to visible. Such flat meta-optics can focus electromagnetic waves, generate structured beams and vort ices, enhance local fields for sensing as well as provide additional functionalities for advanced MRI machinery. Recent advances are associated with exotic optical modes called bound states in the continuum, which can give rise to extremely large quality factors and supercavity lasing. Here, we experimentally demonstrate subwavelength active supercavities with extremely high-Q resonances that could be reconfigured at an ultrafast time scale. We reveal that such supercavities enable all-optical switching and modulation of extremely sharp resonances, and thus could have numerous applications in lasing, mode multiplexing, and biosensing.
Unidirectional radiation is important for a variety of optoelectronic applications. Many unidirectional emitters exist, but they all rely on the use of materials or structures that forbid outgoing waves, i.e. mirrors. Here, we theoretically propose a nd experimentally demonstrate a class of resonances in photonic crystal slabs, which only radiate towards a single side with no mirror placed on the other side - we call them ``unidirectional bound states in the continuum. These resonances are found to emerge when a pair of half-integer topological charges in the polarization field bounce into each other in the momentum space. We experimentally demonstrate such resonances in the telecommunication regime, where we achieve single-sided quality factor as high as 1.6e5, equivalent to a radiation asymmetry ratio of 27.7 dB. Our work represents a vivid example of applying topological principles to improve optoelectronic devices. Possible applications of our work include grating couplers, photoniccrystal surface-emitting lasers, and antennas for light detection and ranging.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا