ترغب بنشر مسار تعليمي؟ اضغط هنا

High-harmonic generation from metasurfaces empowered by bound states in the continuum

95   0   0.0 ( 0 )
 نشر من قبل Sergey V. Makarov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The concept of optical bound states in the continuum (BICs) underpins the existence of strongly localized waves embedded into the radiation spectrum that can enhance the electromagnetic fields in subwavelength photonic structures. Early studies of optical BICs in waveguides and photonic crystals uncovered their topological properties, and the concept of quasi-BIC metasurfaces facilitated applications of strong light-matter interactions to biosensing, lasing, and low-order nonlinear processes. Here we employ BIC-empowered dielectric metasurfaces to generate efficiently high optical harmonics up to the 11th order. We optimize a BIC mode for the first few harmonics and observe a transition between perturbative and nonperturbative nonlinear regimes. We also suggest a general strategy for designing subwavelength structures with strong resonances and nonperturbative nonlinearities. Our work bridges the fields of perturbative and nonperturbative nonlinear optics on the subwavelength scale.

قيم البحث

اقرأ أيضاً

We demonstrate that rotationally symmetric chiral metasurfaces can support arbitrarily sharp resonances with the maximum optical chirality determined by precise shaping of bound states in the continuum (BICs). Being uncoupled from one circular polari sation of light and resonantly coupled to its counterpart, a metasurface hosting the chiral BIC resonance exhibits a narrow peak in the circular dichroism spectrum. We propose a realization of such chiral BIC metasurfaces based on pairs of dielectric bars and validate the concept of maximum chirality by numerical simulations
We uncover a novel mechanism for superscattering of subwavelength resonators closely associated with the physics of bound states in the continuum. We demonstrate that superscattering occurs as a consequence of constructive interference driven by the Friedrich-Wintgen mechanism, and it may exceed the currently established limits for the cross-section of a single open scattering channel, within the channel itself. We develop a non-Hermitian model to describe interfering resonances of quasi-normal modes to show that this effect can only occur for scatterers violating the spherical symmetry, and therefore it cannot be predicted with the classical Mie solutions. Our results reveal unusual physics of non-Hermitian systems having important implications for functional metadevices.
Resonant metasurfaces are an attractive platform for enhancing the non-linear optical processes, such as second harmonic generation (SHG), since they can generate very large local electromagnetic fields while relaxing the phase-matching requirements. Here, we take this platform a step closer to the practical applications by demonstrating visible range, continuous wave (CW) SHG. We do so by combining the attractive material properties of gallium phosphide with engineered, high quality-factor photonic modes enabled by bound states in the continuum. For the optimum case, we obtain efficiencies around 5e-5 % W$^{-1}$ when the system is pumped at 1200 nm wavelength with CW intensities of 1 kW/cm$^2$. Moreover, we measure external efficiencies as high as 0.1 % W$^{-1}$ with pump intensities of only 10 MW/cm$^2$ for pulsed irradiation. This efficiency is higher than the values previously reported for dielectric metasurfaces, but achieved here with pump intensities that are two orders of magnitude lower.
We reveal that metasurfaces created by seemingly different lattices of (dielectric or metallic) meta-atoms with broken in-plane symmetry can support sharp high-$Q$ resonances that originate from the physics of bound states in the continuum. We prove rigorously a direct link between the bound states in the continuum and the Fano resonances, and develop a general theory of such metasurfaces, suggesting the way for smart engineering of resonances for many applications in nanophotonics and meta-optics.
Bound states in the continuum (BICs) represent localized modes with energies embedded in the continuous spectrum of radiating waves. BICs were discovered initially as a mathematical curiosity in quantum mechanics, and more recently were employed in p hotonics. Pure mathematical bound states have infinitely-large quality factors (Q factors) and zero resonant linewidth. In optics, BICs are physically limited by a finite size, material absorption, structural disorder, and surface scattering, and they manifest themselves as the resonant states with large Q factors, also known as supercavity modes or quasi-BICs. Optical BIC resonances have been demonstrated only in extended 2D and 1D systems and have been employed for distinct applications including lasing and sensing. Optical quasi-BIC modes in individual nanoresonators have been discovered recently but they were never observed in experiment. Here, we demonstrate experimentally an isolated subwavelength nanoresonator hosting a quasi-BIC resonance. We fabricate the resonator from AlGaAs material on an engineered substrate, and couple to the quasi-BIC mode using structured light. We employ the resonator as a nonlinear nanoantenna and demonstrate record-high efficiency of second-harmonic generation. Our study brings a novel platform to resonant subwavelength photonics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا