ترغب بنشر مسار تعليمي؟ اضغط هنا

Individual nanoantennas empowered by bound states in the continuum for nonlinear photonics

90   0   0.0 ( 0 )
 نشر من قبل Kirill L. Koshelev
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Bound states in the continuum (BICs) represent localized modes with energies embedded in the continuous spectrum of radiating waves. BICs were discovered initially as a mathematical curiosity in quantum mechanics, and more recently were employed in photonics. Pure mathematical bound states have infinitely-large quality factors (Q factors) and zero resonant linewidth. In optics, BICs are physically limited by a finite size, material absorption, structural disorder, and surface scattering, and they manifest themselves as the resonant states with large Q factors, also known as supercavity modes or quasi-BICs. Optical BIC resonances have been demonstrated only in extended 2D and 1D systems and have been employed for distinct applications including lasing and sensing. Optical quasi-BIC modes in individual nanoresonators have been discovered recently but they were never observed in experiment. Here, we demonstrate experimentally an isolated subwavelength nanoresonator hosting a quasi-BIC resonance. We fabricate the resonator from AlGaAs material on an engineered substrate, and couple to the quasi-BIC mode using structured light. We employ the resonator as a nonlinear nanoantenna and demonstrate record-high efficiency of second-harmonic generation. Our study brings a novel platform to resonant subwavelength photonics.



قيم البحث

اقرأ أيضاً

We uncover a novel mechanism for superscattering of subwavelength resonators closely associated with the physics of bound states in the continuum. We demonstrate that superscattering occurs as a consequence of constructive interference driven by the Friedrich-Wintgen mechanism, and it may exceed the currently established limits for the cross-section of a single open scattering channel, within the channel itself. We develop a non-Hermitian model to describe interfering resonances of quasi-normal modes to show that this effect can only occur for scatterers violating the spherical symmetry, and therefore it cannot be predicted with the classical Mie solutions. Our results reveal unusual physics of non-Hermitian systems having important implications for functional metadevices.
We study, both theoretically and experimentally, tunable metasurfaces supporting sharp Fano-resonances inspired by optical bound states in the continuum. We explore the use of arsenic trisulfide (a photosensitive chalcogenide glass) having optical pr operties which can be finely tuned by light absorption at the post-fabrication stage. We select the resonant wavelength of the metasurface corresponding to the energy below the arsenic trisulfide bandgap, and experimentally control the resonance spectral position via exposure to the light of energies above the bandgap.
Being motivated by the recent prediction of high-$Q$ supercavity modes in subwavelength dielectric resonators, we study the second-harmonic generation from isolated subwavelength AlGaAs nanoantennas pumped by a structured light. We reveal that nonlin ear effects at the nanoscale can be enhanced dramatically provided the resonator parameters are tuned to the regime of the bound state in the continuum. We predict a record-high conversion efficiency for nanoscale resonators that exceeds by two orders of magnitude the conversion efficiency observed at the conditions of magnetic dipole Mie resonance, thus opening the way for highly-efficient nonlinear metadevices.
We demonstrate that rotationally symmetric chiral metasurfaces can support arbitrarily sharp resonances with the maximum optical chirality determined by precise shaping of bound states in the continuum (BICs). Being uncoupled from one circular polari sation of light and resonantly coupled to its counterpart, a metasurface hosting the chiral BIC resonance exhibits a narrow peak in the circular dichroism spectrum. We propose a realization of such chiral BIC metasurfaces based on pairs of dielectric bars and validate the concept of maximum chirality by numerical simulations
Nonlinear nanostructured surfaces provide a paradigm shift in nonlinear optics with new ways to control and manipulate frequency conversion processes at the nanoscale, also offering novel opportunities for applications in photonics, chemistry, materi al science, and biosensing. Here, we develop a general approach to employ sharp resonances in metasurfaces originated from the physics of bound states in the continuum for both engineering and enhancing the nonlinear response. We study experimentally the third-harmonic generation from metasurfaces composed of symmetry-broken silicon meta-atoms and reveal that the harmonic generation intensity depends critically on the asymmetry parameter. We employ the concept of the critical coupling of light to the metasurface resonances to uncover the effect of radiative and nonradiative losses on the nonlinear conversion efficiency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا