ﻻ يوجد ملخص باللغة العربية
We study the ground state properties, the electronic excitations and lattice dynamics in spin-liquid candidate TbInO$_3$. By employing polarization resolved Raman spectroscopy we define the inter- and intra-multiplet excitations, and establish the low-energy crystal-field (CF) level scheme. In particular, we demonstrate that the ground state of the Tb$^{3+}$ ions is a non-Kramers doublet, and relate the enhanced linewidth of the CF modes to the magnetic fluctuations near the spin-liquid ground state. We identify all 38 allowed Raman-active phonon modes at low temperature. Moreover, we observe hybrid vibronic excitations involving coupled CF and low-lying phonon modes, suggesting strong spin-lattice dynamics. We develop a model for vibronic states and obtain the parameters of the bare responses and coupling strength. We further demonstrate that the obtained CF level scheme is consistent with specific heat data.
Spin liquid ground states are predicted to arise within several distinct scenarios in condensed matter physics. The observation of these disordered magnetic states is particularly pervasive amongst a class of materials known as frustrated magnets, in
A quantum spin liquid (QSL) is an exotic state of matter in which electrons spins are quantum entangled over long distances, but do not show symmetry-breaking magnetic order in the zero-temperature limit. The observation of QSL states is a central ai
Frustrated quantum magnets are expected to host many exotic quantum spin states like quantum spin liquid (QSL), and have attracted numerous interest in modern condensed matter physics. The discovery of the triangular lattice spin liquid candidate YbM
A layered triangular lattice with spin-1/2 ions is an ideal platform to explore highly entangled exotic states like quantum spin liquid (QSL). Here, we report a systematic in-field neutron scattering study on a perfect two-dimensional triangular-latt
We apply moderate-high-energy inelastic neutron scattering (INS) measurements to investigate Yb$^{3+}$ crystalline electric field (CEF) levels in the triangular spin-liquid candidate YbMgGaO$_4$. Three CEF excitations from the ground-state Kramers do