ﻻ يوجد ملخص باللغة العربية
We apply moderate-high-energy inelastic neutron scattering (INS) measurements to investigate Yb$^{3+}$ crystalline electric field (CEF) levels in the triangular spin-liquid candidate YbMgGaO$_4$. Three CEF excitations from the ground-state Kramers doublet are centered at the energies $hbar omega$ = 39, 61, and 97,meV in agreement with the effective mbox{spin-1/2} $g$-factors and experimental heat capacity, but reveal sizable broadening. We argue that this broadening originates from the site mixing between Mg$^{2+}$ and Ga$^{3+}$ giving rise to a distribution of Yb--O distances and orientations and, thus, of CEF parameters that account for the peculiar energy profile of the CEF excitations. The CEF randomness gives rise to a distribution of the effective spin-1/2 $g$-factors and explains the unprecedented broadening of low-energy magnetic excitations in the fully polarized ferromagnetic phase of YbMgGaO$_4$, although a distribution of magnetic couplings due to the Mg/Ga disorder may be important as well.
Quantum spin liquid (QSL) is a novel state of matter which refuses the conventional spin freezing even at 0 K. Experimentally searching for the structurally perfect candidates is a big challenge in condensed matter physics. Here we report the success
YbMgGaO$_{4}$, a structurally perfect two-dimensional triangular lattice with odd number of electrons per unit cell and spin-orbit entangled effective spin-1/2 local moments of Yb$^{3+}$ ions, is likely to experimentally realize the quantum spin liqu
In this paper, we performed thermodynamic and electron spin resonance (ESR) measurements to study low-energy magnetic excitations, which were significantly affected by crystalline electric field (CEF) excitations due to relatively small gaps between
The spin-1/2 triangular lattice antiferromagnet YbMgGaO$_{4}$ has attracted recent attention as a quantum spin-liquid candidate with the possible presence of off-diagonal anisotropic exchange interactions induced by spin-orbit coupling. Whether a qua
We report on comprehensive results identifying the ground state of a triangular-lattice structured YbZnGaO$_4$ to be spin glass, including no long-range magnetic order, prominent broad excitation continua, and absence of magnetic thermal conductivity