ترغب بنشر مسار تعليمي؟ اضغط هنا

Field-Induced Spin Excitations in the Spin-1/2 Triangular-Lattice Antiferromagnet CsYbSe$_2$

258   0   0.0 ( 0 )
 نشر من قبل Tao Xie
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A layered triangular lattice with spin-1/2 ions is an ideal platform to explore highly entangled exotic states like quantum spin liquid (QSL). Here, we report a systematic in-field neutron scattering study on a perfect two-dimensional triangular-lattice antiferromagnet, CsYbSe$_2$, a member of the large QSL candidate family rare-earth chalcogenides. The elastic neutron scattering measured down to 70 mK shows that there is a short-range 120$^{circ}$ magnetic order at zero field. In the field-induced ordered states, the spin-spin correlation lengths along the $c$ axis are relatively short, although the heat capacity results indicate long-range magnetic orders at 3 T $-$ 5 T. The inelastic neutron scattering spectra evolve from highly damped continuum-like excitations at zero field to relatively sharp spin wave modes at the plateau phase. Our extensive large-cluster density-matrix renormalization group calculations with a Heisenberg triangular-lattice nearest-neighbor antiferromagnetic model reproduce the essential features of the experimental spectra, including continuum-like excitations at zero field, series of sharp magnons at the plateau phase as well as two-magnon excitations at high energy. This work presents comprehensive experimental and theoretical overview of the unconventional field-induced spin dynamics in triangular-lattice Heisenberg antiferromagnet and thus provides valuable insight into quantum many-body phenomena.

قيم البحث

اقرأ أيضاً

We report on high-field electron spin resonance (ESR) studies of magnetic excitations in the spin-1/2 triangular-lattice antiferromagnet Cs$_2$CuBr$_4$. Frequency-field diagrams of ESR excitations are measured for different orientations of magnetic f ields up to 25 T. We show that the substantial zero-field energy gap, $Deltaapprox9.5$ K, observed in the low-temperature excitation spectrum of Cs$_2$CuBr$_4$ [Zvyagin $et~al.$, Phys. Rev. Lett. 112, 077206 (2014)], is present well above $T_N$. Noticeably, the transition into the long-range magnetically ordered phase does not significantly affect the size of the gap, suggesting that even below $T_N$ the high-energy spin dynamics in Cs$_2$CuBr$_4$ is determined by short-range-order spin correlations. The experimental data are compared with results of model spin-wave-theory calculations for spin-1/2 triangle-lattice antiferromagnet.
Here we present a neutron scattering-based study of magnetic excitations and magnetic order in NaYbO$_2$ under the application of an external magnetic field. The crystal electric field-split $J = 7/2$ multiplet structure is determined, revealing a mi xed $|m_z>$ ground state doublet and is consistent with a recent report Ding et al. [1]. Our measurements further suggest signatures of exchange effects in the crystal field spectrum, manifested by a small splitting in energy of the transition into the first excited doublet. The field-dependence of the low-energy magnetic excitations across the transition from the quantum disordered ground state into the fluctuation-driven ordered regime is analyzed. Signs of a first-order phase transition into a noncollinear ordered state are revealed at the upper-field phase boundary of the ordered regime, and higher order magnon scattering, suggestive of strong magnon-magnon interactions, is resolved within the previously reported $up-up-down$ phase. Our results reveal a complex phase diagram of field-induced order and spin excitations within NaYbO$_2$ and demonstrate the dominant role of quantum fluctuations cross a broad range of fields within its interlayer frustrated triangular lattice.
Two-dimensional triangular-lattice materials with spin-1/2 are perfect platforms for investigating quantum frustrated physics with spin fluctuations. Here we report the structure, magnetization, heat capacity and inelastic neutron scattering (INS) re sults on cesium ytterbium diselenide, CsYbSe$_2$. There is no long-range magnetic order down to 0.4 K at zero field. The temperature dependent magnetization, $M(T)$, reveals an easy-plane magnetic anisotropy. A maximum is found in $M(T)$ around emph{T}$sim$1.5 K when magnetic field $H$ is applied in the $ab$ plane, indicating the short-range interaction. The low-temperature isothermal magnetization $M(H)$ shows a one-third plateau of the estimated saturation moment, that is characteristic of a two-dimensional frustrated triangular lattice. Heat capacity shows field-induced long-range magnetic order for both $H||c$ and $H||ab$ directions. The broad peak in heat capacity and highly damped INS magnetic excitation at $T$=2 K suggests strong spin fluctuations. The dispersive in-plane INS, centered at the (1/3 1/3 0) point, and the absence of dispersion along $c$ direction suggests 120$^{circ}$ non-collinear 2D-like spin correlations. All these results indicate that the two-dimensional frustrated material CsYbSe$_2$ can be in proximity to the triangular-lattice quantum spin liquid. We propose an experimental low-temperature $H$-$T$ phase diagram for CsYbSe$_2$.
We study effects of nonmagnetic impurities in a spin-1/2 frustrated triangular antiferromagnet with the aim of understanding the observed broadening of $^{13}$C NMR lines in the organic spin liquid material $kappa$-(ET)$_2$Cu$_2$(CN)$_3$. For high te mperatures down to $J/3$, we calculate local susceptibility near a nonmagnetic impurity and near a grain boundary for the nearest neighbor Heisenberg model in high temperature series expansion. We find that the local susceptibility decays to the uniform one in few lattice spacings, and for a low density of impurities we would not be able to explain the line broadening present in the experiments already at elevated temperatures. At low temperatures, we assume a gapless spin liquid with a Fermi surface of spinons. We calculate the local susceptibility in the mean field and also go beyond the mean field by Gutzwiller projection. The zero temperature local susceptibility decays as a power law and oscillates at $2 k_F$. As in the high temperature analysis we find that a low density of impurities is not able to explain the observed broadening of the lines. We are thus led to conclude that there is more disorder in the system. We find that a large density of point-like disorder gives broadening that is consistent with the experiment down to about 5K, but that below this temperature additional mechanism is likely needed.
326 - N. Li , Q. Huang , X. Y. Yue 2019
The most fascinating feature of certain two-dimensional (2D) gapless quantum spin liquid (QSL) is that their spinon excitations behave like the fermionic carriers of a paramagnetic metal. The spinon Fermi surface is then expected to produce a linear increase of the thermal conductivity with temperature that should manifest via a residual value ($kappa_0/T$) in the zero-temperature limit. However, this linear in T behavior has been reported for very few QSL candidates. Here, we studied the ultralow-temperature thermal conductivity of an effective spin-1/2 triangular QSL candidate Na$_2$BaCo(PO$_4$)$_2$, which has an antiferromagnetic order at very low temperature ($T_N sim$ 148 mK), and observed a finite $kappa_0/T$ extrapolated from the data above $T_N$. Moreover, while approaching zero temperature, it exhibits series of quantum spin state transitions with applied field along the $c$ axis. These observations indicate that Na$_2$BaCo(PO$_4$)$_2$ possibly behaves as a gapless QSL with itinerant spin excitations above $T_N$ and its strong quantum spin fluctuations persist below $T_N$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا