ﻻ يوجد ملخص باللغة العربية
Many plankton species undergo daily vertical migration to large depths in the turbulent ocean. To do this efficiently, the plankton can use a gyrotactic mechanism, aligning them with gravity to swim downwards, or against gravity to swim upwards. Many species show passive mechanisms for gyrotactic stability. For example, bottom-heavy plankton tend to align upwards. This is efficient for upward migration in quiescent flows, but it is often sensitive to turbulence which upsets the alignment. Here we suggest a simple, robust active mechanism for gyrotactic stability, which is only lightly affected by turbulence and allows alignment both along and against gravity. We use a model for a plankton that swims with a constant speed and can actively steer in response to hydrodynamic signals encountered in simulations of a turbulent flow. Using reinforcement learning, we identify the optimal steering strategy. By using its setae to sense its settling velocity transversal to its swimming direction, the swimmer can deduce information about the direction of gravity, allowing it to actively align upwards. The mechanism leads to a rate of upward migration in a turbulent flow that is of the same order as in quiescent flows, unless the turbulence is very vigorous. In contrast, passive swimmers show much smaller upward velocity in turbulence. Settling may even cause them to migrate downwards in vigorous turbulence.
Recent studies show that spherical motile micro-organisms in turbulence subject to gravitational torques gather in down-welling regions of the turbulent flow. By analysing a statistical model we analytically compute how shape affects the dynamics, pr
Geometric confinements are frequently encountered in the biological world and strongly affect the stability, topology, and transport properties of active suspensions in viscous flow. Based on a far-field analytical model, the low-Reynolds-number loco
We develop a general hydrodynamic theory describing a system of interacting actively propelling particles of arbitrary shape suspended in a viscous fluid. We model the active part of the particle motion using a slip velocity prescribed on the otherwi
A suspension of gyrotactic microalgae Chlamydomonas augustae swimming in a cylindrical water vessel in solid-body rotation is studied. Our experiments show that swimming algae form an aggregate around the axis of rotation, whose intensity increases w
Thin liquid films are central to everyday life. They are ubiquitous in modern technology (pharmaceuticals, coatings), consumer products (foams, emulsions) and also serve vital biological functions (tear film of the eye, pulmonary surfactants in the l