ﻻ يوجد ملخص باللغة العربية
A suspension of gyrotactic microalgae Chlamydomonas augustae swimming in a cylindrical water vessel in solid-body rotation is studied. Our experiments show that swimming algae form an aggregate around the axis of rotation, whose intensity increases with the rotation speed. We explain this phenomenon by the centripetal orientation of the swimming direction towards the axis of rotation. This centripetal focusing is contrasted by diffusive fluxes due to stochastic reorientation of the cells. The competition of the two effects lead to a stationary distribution, which we analytically derive from a refined mathematical model of gyrotactic swimmers. The temporal evolution of the cell distribution, obtained via numerical simulations of the stochastic model, is in quantitative agreement with the experimental measurements in the range of parameters explored.
The aerial environment in the operating domain of small-scale natural and artificial flapping wing fliers is highly complex, unsteady and generally turbulent. Considering flapping flight in an unsteady wind environment with a periodically varying lat
Many plankton species undergo daily vertical migration to large depths in the turbulent ocean. To do this efficiently, the plankton can use a gyrotactic mechanism, aligning them with gravity to swim downwards, or against gravity to swim upwards. Many
Recent studies show that spherical motile micro-organisms in turbulence subject to gravitational torques gather in down-welling regions of the turbulent flow. By analysing a statistical model we analytically compute how shape affects the dynamics, pr
The use of microscopic discrete fluid volumes (i.e., droplets) as microreactors for digital microfluidic applications often requires mixing enhancement and control within droplets. In this work, we consider a translating spherical liquid droplet to w
At finite Reynolds numbers, Re, particles migrate across laminar flow streamlines to their equilibrium positions in microchannels. This migration is attributed to a lift force, and the balance between this lift and gravity determines the location of