ﻻ يوجد ملخص باللغة العربية
Many cell membrane proteins that bind to actin form dynamic clusters driven by contractile flows generated by the actomyosin machinery at the cell cortex. Recent evidence suggests that a necessary condition for the generation of these protein clusters on the membrane is the stratified organization of the active agents -formin-nucleated actin, myosin-II minifilaments, and ARP2/3-nucleated actin mesh -within the cortex. Further, the observation that these clusters dynamically remodel, requires that the components of this active machinery undergo turnover. Here we develop a coarse-grained agent-based Brownian dynamics simulation that incorporates the effects of stratification, binding of myosin minifilaments to multiple actin filaments and their turnover. We show that these three features of the active cortical machinery -stratification, multivalency and turnover -are critical for the realisation of a nonequilibrium steady state characterised by contractile flows and dynamic orientational patterning. We show that this nonequilibrium steady state enabled by the above features of the cortex, can facilitate multi-particle encounters of membrane proteins that profoundly influence the kinetics of bimolecular reactions at the cell surface.
Activity and autonomous motion are fundamental in living and engineering systems. This has stimulated the new field of active matter in recent years, which focuses on the physical aspects of propulsion mechanisms, and on motility-induced emergent col
We investigate the swim pressure exerted by non-chiral and chiral active particles on convex or concave circular boundaries. Active particles are modeled as non-interacting and non-aligning self-propelled Brownian particles. The convex and concave ci
Recent experimental studies have demonstrated that cellular motion can be directed by topographical gradients, such as those resulting from spatial variations in the features of a micropatterned substrate. This phenomenon, known as topotaxis, is espe
We study universal behavior in the moving phase of a generic system of motile particles with alignment interactions in the incompressible limit for spatial dimensions $d>2$. Using a dynamical renormalization group analysis, we obtain the exact dynami
The shear-induced reversible self-organization of active rotors into strip-like aggregates is studied by carrying out computational simulations. The numerical and theoretical results demonstrate that the average width of the strips is linearly depend