ﻻ يوجد ملخص باللغة العربية
Quantum self-testing is a device-independent way to certify quantum states and measurements using only the input-output statistics, with minimal assumptions about the quantum devices. Due to the high demand on tolerable noise, however, experimental self-testing was limited to two-photon systems. Here, we demonstrate the first robust self-testing for multi-particle quantum entanglement. We prepare two examples of four-photon graph states, the Greenberger-Horne-Zeilinger (GHZ) states with a fidelity of 0.957(2) and the linear cluster states with a fidelity of 0.945(2). Based on the observed input-output statistics, we certify the genuine four-photon entanglement and further estimate their qualities with respect to realistic noise in a device-independent manner.
It is well-known that observing nonlocal correlations allows us to draw conclusions about the quantum systems under consideration. In some cases this yields a characterisation which is essentially complete, a phenomenon known as self-testing. Self-te
We generalize the procedure of entanglement swapping to obtain a scheme for manipulating entanglement in multiparticle systems. We describe how this scheme allows to establish multiparticle entanglement between particles belonging to distant users in
Based on the ranks of reduced density matrices, we derive necessary conditions for the separability of multiparticle arbitrary-dimensional mixed states, which are equivalent to sufficient conditions for entanglement. In a similar way we obtain necess
We assess the quality of a source of allegedly pure two-qubit states using both standard tomography and methods inspired by device-independent self-testing. Even when the detection and locality loopholes are open, the latter methods can dispense with
We study the preparation and manipulation of states involving a small number of interacting particles. By controlling the splitting and fusing of potential wells, we show how to interconvert Mott-insulator-like and trapped BEC-like states. We also di