ﻻ يوجد ملخص باللغة العربية
We study the preparation and manipulation of states involving a small number of interacting particles. By controlling the splitting and fusing of potential wells, we show how to interconvert Mott-insulator-like and trapped BEC-like states. We also discuss the generation of Schrodinger cat states by splitting a microtrap and taking into practical consideration the asymmetry between the resulting wells. These schemes can be used to perform multiparticle interferometry with neutral atoms, where interference effects can be observed only when all the participating particles are measured.
Optics and interferometry with matter waves is the art of coherently manipulating the translational motion of particles like neutrons, atoms and molecules. Coherent atom optics is an extension of techniques that were developed for manipulating emph{i
We show that entanglement monotones can characterize the pronounced enhancement of entanglement at a quantum phase transition if they are sensitive to long-range high order correlations. These monotones are found to develop a sharp peak at the critic
Based on the ranks of reduced density matrices, we derive necessary conditions for the separability of multiparticle arbitrary-dimensional mixed states, which are equivalent to sufficient conditions for entanglement. In a similar way we obtain necess
We demonstrate the first deterministic entanglement of two individually addressed neutral atoms using a Rydberg blockade mediated controlled-NOT gate. Parity oscillation measurements reveal an entanglement fidelity of $F=0.58pm0.04$, which is above t
The manipulation of neutral atoms by light is at the heart of countless scientific discoveries in the field of quantum physics in the last three decades. The level of control that has been achieved at the single particle level within arrays of optica