ﻻ يوجد ملخص باللغة العربية
It is well-known that observing nonlocal correlations allows us to draw conclusions about the quantum systems under consideration. In some cases this yields a characterisation which is essentially complete, a phenomenon known as self-testing. Self-testing becomes particularly interesting if we can make the statement robust, so that it can be applied to a real experimental setup. For the simplest self-testing scenarios the most robust bounds come from the method based on operator inequalities. In this work we elaborate on this idea and apply it to the family of tilted CHSH inequalities. These inequalities are maximally violated by partially entangled two-qubit states and our goal is to estimate the quality of the state based only on the observed violation. For these inequalities we have reached a candidate bound and while we have not been able to prove it analytically, we have gathered convincing numerical evidence that it holds. Our final contribution is a proof that in the usual formulation, the CHSH inequality only becomes a self-test when the violation exceeds a certain threshold. This shows that self-testing scenarios fall into two distinct classes depending on whether they exhibit such a threshold or not.
Bell inequalities constitute a key tool in quantum information theory: they not only allow one to reveal nonlocality in composite quantum systems, but, more importantly, they can be used to certify relevant properties thereof. We provide a very simpl
Self-testing refers to a method with which a classical user can certify the state and measurements of quantum systems in a device-independent way. Especially, the self-testing of entangled states is of great importance in quantum information process.
Quantum self-testing is a device-independent way to certify quantum states and measurements using only the input-output statistics, with minimal assumptions about the quantum devices. Due to the high demand on tolerable noise, however, experimental s
We consider the problem of $1$-sided device-independent self-testing of any pure entangled two-qubit state based on steering inequalities which certify the presence of quantum steering. In particular, we note that in the $2-2-2$ steering scenario (in
For a two-qubit system under local depolarizing channels, the most robust and most fragile states are derived for a given concurrence or negativity. For the one-sided channel, the pure states are proved to be the most robust ones, with the aid of the