ترغب بنشر مسار تعليمي؟ اضغط هنا

Manual Evaluation Matters: Reviewing Test Protocols of Distantly Supervised Relation Extraction

87   0   0.0 ( 0 )
 نشر من قبل Tianyu Gao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Distantly supervised (DS) relation extraction (RE) has attracted much attention in the past few years as it can utilize large-scale auto-labeled data. However, its evaluation has long been a problem: previous works either took costly and inconsistent methods to manually examine a small sample of model predictions, or directly test models on auto-labeled data -- which, by our check, produce as much as 53% wrong labels at the entity pair level in the popular NYT10 dataset. This problem has not only led to inaccurate evaluation, but also made it hard to understand where we are and whats left to improve in the research of DS-RE. To evaluate DS-RE models in a more credible way, we build manually-annotated test sets for two DS-RE datasets, NYT10 and Wiki20, and thoroughly evaluate several competitive models, especially the latest pre-trained ones. The experimental results show that the manual evaluation can indicate very different conclusions from automatic ones, especially some unexpected observations, e.g., pre-trained models can achieve dominating performance while being more susceptible to false-positives compared to previous methods. We hope that both our manual test sets and novel observations can help advance future DS-RE research.



قيم البحث

اقرأ أيضاً

Distant supervision leverages knowledge bases to automatically label instances, thus allowing us to train relation extractor without human annotations. However, the generated training data typically contain massive noise, and may result in poor perfo rmances with the vanilla supervised learning. In this paper, we propose to conduct multi-instance learning with a novel Cross-relation Cross-bag Selective Attention (C$^2$SA), which leads to noise-robust training for distant supervised relation extractor. Specifically, we employ the sentence-level selective attention to reduce the effect of noisy or mismatched sentences, while the correlation among relations were captured to improve the quality of attention weights. Moreover, instead of treating all entity-pairs equally, we try to pay more attention to entity-pairs with a higher quality. Similarly, we adopt the selective attention mechanism to achieve this goal. Experiments with two types of relation extractor demonstrate the superiority of the proposed approach over the state-of-the-art, while further ablation studies verify our intuitions and demonstrate the effectiveness of our proposed two techniques.
Distant supervision has been a widely used method for neural relation extraction for its convenience of automatically labeling datasets. However, existing works on distantly supervised relation extraction suffer from the low quality of test set, whic h leads to considerable biased performance evaluation. These biases not only result in unfair evaluations but also mislead the optimization of neural relation extraction. To mitigate this problem, we propose a novel evaluation method named active testing through utilizing both the noisy test set and a few manual annotations. Experiments on a widely used benchmark show that our proposed approach can yield approximately unbiased evaluations for distantly supervised relation extractors.
In recent years, distantly-supervised relation extraction has achieved a certain success by using deep neural networks. Distant Supervision (DS) can automatically generate large-scale annotated data by aligning entity pairs from Knowledge Bases (KB) to sentences. However, these DS-generated datasets inevitably have wrong labels that result in incorrect evaluation scores during testing, which may mislead the researchers. To solve this problem, we build a new dataset NYTH, where we use the DS-generated data as training data and hire annotators to label test data. Compared with the previous datasets, NYT-H has a much larger test set and then we can perform more accurate and consistent evaluation. Finally, we present the experimental results of several widely used systems on NYT-H. The experimental results show that the ranking lists of the comparison systems on the DS-labelled test data and human-annotated test data are different. This indicates that our human-annotated data is necessary for evaluation of distantly-supervised relation extraction.
Distant supervision (DS) is a well established technique for creating large-scale datasets for relation extraction (RE) without using human annotations. However, research in DS-RE has been mostly limited to the English language. Constraining RE to a single language inhibits utilization of large amounts of data in other languages which could allow extraction of more diverse facts. Very recently, a dataset for multilingual DS-RE has been released. However, our analysis reveals that the proposed dataset exhibits unrealistic characteristics such as 1) lack of sentences that do not express any relation, and 2) all sentences for a given entity pair expressing exactly one relation. We show that these characteristics lead to a gross overestimation of the model performance. In response, we propose a new dataset, DiS-ReX, which alleviates these issues. Our dataset has more than 1.5 million sentences, spanning across 4 languages with 36 relation classes + 1 no relation (NA) class. We also modify the widely used bag attention models by encoding sentences using mBERT and provide the first benchmark results on multilingual DS-RE. Unlike the competing dataset, we show that our dataset is challenging and leaves enough room for future research to take place in this field.
Label noise and long-tailed distributions are two major challenges in distantly supervised relation extraction. Recent studies have shown great progress on denoising, but pay little attention to the problem of long-tailed relations. In this paper, we introduce constraint graphs to model the dependencies between relation labels. On top of that, we further propose a novel constraint graph-based relation extraction framework(CGRE) to handle the two challenges simultaneously. CGRE employs graph convolution networks (GCNs) to propagate information from data-rich relation nodes to data-poor relation nodes, and thus boosts the representation learning of long-tailed relations. To further improve the noise immunity, a constraint-aware attention module is designed in CGRE to integrate the constraint information. Experimental results on a widely-used benchmark dataset indicate that our approach achieves significant improvements over the previous methods for both denoising and long-tailed relation extraction. Our dataset and codes are available at https://github.com/tmliang/CGRE.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا