ﻻ يوجد ملخص باللغة العربية
In recent years, distantly-supervised relation extraction has achieved a certain success by using deep neural networks. Distant Supervision (DS) can automatically generate large-scale annotated data by aligning entity pairs from Knowledge Bases (KB) to sentences. However, these DS-generated datasets inevitably have wrong labels that result in incorrect evaluation scores during testing, which may mislead the researchers. To solve this problem, we build a new dataset NYTH, where we use the DS-generated data as training data and hire annotators to label test data. Compared with the previous datasets, NYT-H has a much larger test set and then we can perform more accurate and consistent evaluation. Finally, we present the experimental results of several widely used systems on NYT-H. The experimental results show that the ranking lists of the comparison systems on the DS-labelled test data and human-annotated test data are different. This indicates that our human-annotated data is necessary for evaluation of distantly-supervised relation extraction.
Distant supervision (DS) is a well established technique for creating large-scale datasets for relation extraction (RE) without using human annotations. However, research in DS-RE has been mostly limited to the English language. Constraining RE to a
Distant supervision has been a widely used method for neural relation extraction for its convenience of automatically labeling datasets. However, existing works on distantly supervised relation extraction suffer from the low quality of test set, whic
Distantly supervised (DS) relation extraction (RE) has attracted much attention in the past few years as it can utilize large-scale auto-labeled data. However, its evaluation has long been a problem: previous works either took costly and inconsistent
Distant supervision leverages knowledge bases to automatically label instances, thus allowing us to train relation extractor without human annotations. However, the generated training data typically contain massive noise, and may result in poor perfo
Label noise and long-tailed distributions are two major challenges in distantly supervised relation extraction. Recent studies have shown great progress on denoising, but pay little attention to the problem of long-tailed relations. In this paper, we