ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning to Route via Theory-Guided Residual Network

57   0   0.0 ( 0 )
 نشر من قبل Chang Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The heavy traffic and related issues have always been concerns for modern cities. With the help of deep learning and reinforcement learning, people have proposed various policies to solve these traffic-related problems, such as smart traffic signal control systems and taxi dispatching systems. People usually validate these policies in a city simulator, since directly applying them in the real city introduces real cost. However, these policies validated in the city simulator may fail in the real city if the simulator is significantly different from the real world. To tackle this problem, we need to build a real-like traffic simulation system. Therefore, in this paper, we propose to learn the human routing model, which is one of the most essential part in the traffic simulator. This problem has two major challenges. First, human routing decisions are determined by multiple factors, besides the common time and distance factor. Second, current historical routes data usually covers just a small portion of vehicles, due to privacy and device availability issues. To address these problems, we propose a theory-guided residual network model, where the theoretical part can emphasize the general principles for human routing decisions (e.g., fastest route), and the residual part can capture drivable condition preferences (e.g., local road or highway). Since the theoretical part is composed of traditional shortest path algorithms that do not need data to train, our residual network can learn human routing models from limited data. We have conducted extensive experiments on multiple real-world datasets to show the superior performance of our model, especially with small data. Besides, we have also illustrated why our model is better at recovering real routes through case studies.



قيم البحث

اقرأ أيضاً

Learning complex behaviors through interaction requires coordinated long-term planning. Random exploration and novelty search lack task-centric guidance and waste effort on non-informative interactions. Instead, decision making should target samples with the potential to optimize performance far into the future, while only reducing uncertainty where conducive to this objective. This paper presents latent optimistic value exploration (LOVE), a strategy that enables deep exploration through optimism in the face of uncertain long-term rewards. We combine finite horizon rollouts from a latent model with value function estimates to predict infinite horizon returns and recover associated uncertainty through ensembling. Policy training then proceeds on an upper confidence bound (UCB) objective to identify and select the interactions most promising to improve long-term performance. We apply LOVE to visual control tasks in continuous state-action spaces and demonstrate improved sample complexity on a selection of benchmarking tasks.
Various factorization-based methods have been proposed to leverage second-order, or higher-order cross features for boosting the performance of predictive models. They generally enumerate all the cross features under a predefined maximum order, and t hen identify useful feature interactions through model training, which suffer from two drawbacks. First, they have to make a trade-off between the expressiveness of higher-order cross features and the computational cost, resulting in suboptimal predictions. Second, enumerating all the cross features, including irrelevant ones, may introduce noisy feature combinations that degrade model performance. In this work, we propose the Adaptive Factorization Network (AFN), a new model that learns arbitrary-order cross features adaptively from data. The core of AFN is a logarithmic transformation layer to convert the power of each feature in a feature combination into the coefficient to be learned. The experimental results on four real datasets demonstrate the superior predictive performance of AFN against the start-of-the-arts.
The recommender system is an important form of intelligent application, which assists users to alleviate from information redundancy. Among the metrics used to evaluate a recommender system, the metric of conversion has become more and more important . The majority of existing recommender systems perform poorly on the metric of conversion due to its extremely sparse feedback signal. To tackle this challenge, we propose a deep hierarchical reinforcement learning based recommendation framework, which consists of two components, i.e., high-level agent and low-level agent. The high-level agent catches long-term sparse conversion signals, and automatically sets abstract goals for low-level agent, while the low-level agent follows the abstract goals and interacts with real-time environment. To solve the inherent problem in hierarchical reinforcement learning, we propose a novel deep hierarchical reinforcement learning algorithm via multi-goals abstraction (HRL-MG). Our proposed algorithm contains three characteristics: 1) the high-level agent generates multiple goals to guide the low-level agent in different stages, which reduces the difficulty of approaching high-level goals; 2) different goals share the same state encoder parameters, which increases the update frequency of the high-level agent and thus accelerates the convergence of our proposed algorithm; 3) an appreciate benefit assignment function is designed to allocate rewards in each goal so as to coordinate different goals in a consistent direction. We evaluate our proposed algorithm based on a real-world e-commerce dataset and validate its effectiveness.
We revisit residual algorithms in both model-free and model-based reinforcement learning settings. We propose the bidirectional target network technique to stabilize residual algorithms, yielding a residual version of DDPG that significantly outperfo rms vanilla DDPG in the DeepMind Control Suite benchmark. Moreover, we find the residual algorithm an effective approach to the distribution mismatch problem in model-based planning. Compared with the existing TD($k$) method, our residual-based method makes weaker assumptions about the model and yields a greater performance boost.
Deep reinforcement learning (deep RL) holds the promise of automating the acquisition of complex controllers that can map sensory inputs directly to low-level actions. In the domain of robotic locomotion, deep RL could enable learning locomotion skil ls with minimal engineering and without an explicit model of the robot dynamics. Unfortunately, applying deep RL to real-world robotic tasks is exceptionally difficult, primarily due to poor sample complexity and sensitivity to hyperparameters. While hyperparameters can be easily tuned in simulated domains, tuning may be prohibitively expensive on physical systems, such as legged robots, that can be damaged through extensive trial-and-error learning. In this paper, we propose a sample-efficient deep RL algorithm based on maximum entropy RL that requires minimal per-task tuning and only a modest number of trials to learn neural network policies. We apply this method to learning walking gaits on a real-world Minitaur robot. Our method can acquire a stable gait from scratch directly in the real world in about two hours, without relying on any model or simulation, and the resulting policy is robust to moderate variations in the environment. We further show that our algorithm achieves state-of-the-art performance on simulated benchmarks with a single set of hyperparameters. Videos of training and the learned policy can be found on the project website.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا