ﻻ يوجد ملخص باللغة العربية
Various factorization-based methods have been proposed to leverage second-order, or higher-order cross features for boosting the performance of predictive models. They generally enumerate all the cross features under a predefined maximum order, and then identify useful feature interactions through model training, which suffer from two drawbacks. First, they have to make a trade-off between the expressiveness of higher-order cross features and the computational cost, resulting in suboptimal predictions. Second, enumerating all the cross features, including irrelevant ones, may introduce noisy feature combinations that degrade model performance. In this work, we propose the Adaptive Factorization Network (AFN), a new model that learns arbitrary-order cross features adaptively from data. The core of AFN is a logarithmic transformation layer to convert the power of each feature in a feature combination into the coefficient to be learned. The experimental results on four real datasets demonstrate the superior predictive performance of AFN against the start-of-the-arts.
Factorization machine (FM) is a prevalent approach to modeling pairwise (second-order) feature interactions when dealing with high-dimensional sparse data. However, on the one hand, FM fails to capture higher-order feature interactions suffering from
Good quality similarity metrics can significantly facilitate the performance of many large-scale, real-world applications. Existing studies have proposed various solutions to learn a Mahalanobis or bilinear metric in an online fashion by either restr
We present the ADaptive Adversarial Imitation Learning (ADAIL) algorithm for learning adaptive policies that can be transferred between environments of varying dynamics, by imitating a small number of demonstrations collected from a single source dom
We build a theoretical framework for designing and understanding practical meta-learning methods that integrates sophisticated formalizations of task-similarity with the extensive literature on online convex optimization and sequential prediction alg
In reward-poisoning attacks against reinforcement learning (RL), an attacker can perturb the environment reward $r_t$ into $r_t+delta_t$ at each step, with the goal of forcing the RL agent to learn a nefarious policy. We categorize such attacks by th