ترغب بنشر مسار تعليمي؟ اضغط هنا

Nanoscale positioning approaches for integrating single epitaxial quantum emitters with photonic nanostructures

65   0   0.0 ( 0 )
 نشر من قبل Jin Liu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Deterministically integrating single solid-state quantum emitters with photonic nanostructures serves as a key enabling resource in the context of photonic quantum technology. Due to the random spatial location of many widely-used solid-state quantum emitters, a number of positoning approaches for locating the quantum emitters before nanofabrication have been explored in the last decade. Here, we review the working principles of several nanoscale positioning methods and the most recent progress in this field, covering techniques including atomic force microscopy, scanning electron microscopy, confocal microscopy with textit{in situ} lithography, and wide-field fluorescence imaging. A selection of representative device demonstrations with high-performance is presented, including high-quality single-photon sources, bright entangled-photon pairs, strongly-coupled cavity QED systems, and other emerging applications. The challenges in applying positioning techniques to different material systems and opportunities for using these approaches for realizing large-scale quantum photonic devices are discussed.

قيم البحث

اقرأ أيضاً

Hybrid plasmonic nanoemitters based on the combination of quantum dot emitters (QD) and plasmonic nanoantennas open up new perspectives in the control of light. However, precise positioning of any active medium at the nanoscale constitutes a challeng e. Here, we report on the optimal overlap of antennas near-field and active medium whose spatial distribution is controlled via a plasmon-triggered 2-photon polymerization of a photosensitive formulation containing QDs. Au nanoparticles of various geometries are considered. The response of these hybrid nano-emitters is shown to be highly sensitive to the light polarization. Different light emission states are evidenced by photoluminescence measurements. These states correspond to polarization-sensitive nanoscale overlap between the exciting local field and the active medium distribution. The decrease of the QD concentration within the monomer formulation allows trapping of a single quantum dot in the vicinity of the Au particle. The latter objects show polarization-dependent switching in the single-photon regime.
In this manuscript, we outline a reliable procedure to manufacture photonic nanostructures from single-crystal diamond (SCD). Photonic nanostructures, in our case SCD nanopillars on thin (< 1$mu$m) platforms, are highly relevant for nanoscale sensing . The presented top-down procedure includes electron beam lithography (EBL) as well as reactive ion etching (RIE). Our method introduces a novel type of inter-layer, namely silicon, that significantly enhances the adhesion of hydrogen silsesquioxane (HSQ) electron beam resist to SCD and avoids sample charging during EBL. In contrast to previously used adhesion layers, our silicon layer can be removed using a highly-selective RIE step which is not damaging HSQ mask structures. We thus refine published nanofabrication processes to ease a higher process reliability especially in the light of the advancing commercialization of SCD sensor devices.
We present a quantization scheme for optical systems with absorptive losses, based on an expansion in the complete set of scattering solutions to Maxwells equations. The natural emergence of both absorptive loss and fluctuations without introducing a thermal bath is demonstrated. Our model predicts mechanisms of absorption induced squeezing and dispersion mediated photon conversion.
One important building block for future integrated nanophotonic devices is the scalable on-chip interfacing of single photon emitters and quantum memories with single optical modes. Here we present the deterministic integration of a single solid-stat e qubit, the nitrogen-vacancy (NV) center, with a photonic platform consisting exclusively of SiO$_2$ grown thermally on a Si substrate. The platform stands out by its ultra-low fluorescence and the ability to produce various passive structures such as high-Q microresonators and mode-size converters. By numerical analysis an optimal structure for the efficient coupling of a dipole emitter to the guided mode could be determined. Experimentally, the integration of a preselected NV emitter was performed with an atomic force microscope and the on-chip excitation of the quantum emitter as well as the coupling of single photons to the guided mode of the integrated structure could be demonstrated. Our approach shows the potential of this platform as a robust nanoscale interface of on-chip photonic structures with solid-state qubits.
The long dreamed quantum internet would consist of a network of quantum nodes (solid-state or atomic systems) linked by flying qubits, naturally based on photons, travelling over long distances at the speed of light, with negligible decoherence. A ke y component is a light source, able to provide single or entangled photon pairs. Among the different platforms, semiconductor quantum dots are very attractive, as they can be integrated with other photonic and electronic components in miniaturized chips. In the early 1990s two approaches were developed to synthetize self-assembled epitaxial semiconductor quantum dots (QDs), or artificial atoms, namely the Stranski-Krastanov (SK) and the droplet epitaxy (DE) method. Because of its robustness and simplicity, the SK method became the workhorse to achieve several breakthroughs in both fundamental and technological areas. The need for specific emission wavelengths or structural and optical properties has nevertheless motivated further research on the DE method and its more recent development, the local-droplet-etching (LDE), as complementary routes to obtain high quality semiconductor nanostructures. The recent reports on the generation of highly entangled photon pairs, combined with good photon indistinguishability, suggest that DE and LDE QDs may complement (and sometime even outperform) conventional SK InGaAs QDs as quantum emitters. We present here a critical survey of the state of the art of DE and LDE, highlighting the advantages and weaknesses, the obtained achievements and the still open challenges, in view of applications in quantum communication and technology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا