ﻻ يوجد ملخص باللغة العربية
This paper considers the problem of differentially private semi-supervised transfer learning. The notion of membership-mapping is developed using measure theory basis to learn data representation via a fuzzy membership function. An alternative conception of deep autoencoder, referred to as Conditionally Deep Membership-Mapping Autoencoder (CDMMA) (that consists of a nested compositions of membership-mappings), is considered. Under practice-oriented settings, an analytical solution for the learning of CDMFA can be derived by means of variational optimization. The paper proposes a transfer learning approach that combines CDMMA with a tailored noise adding mechanism to achieve a given level of privacy-loss bound with the minimum perturbation of the data. Numerous experiments were carried out using MNIST, USPS, Office, and Caltech256 datasets to verify the competitive robust performance of the proposed methodology.
Ensuring the privacy of sensitive data used to train modern machine learning models is of paramount importance in many areas of practice. One approach to study these concerns is through the lens of differential privacy. In this framework, privacy gua
In this paper, we study efficient differentially private alternating direction methods of multipliers (ADMM) via gradient perturbation for many machine learning problems. For smooth convex loss functions with (non)-smooth regularization, we propose t
Privacy-preserving machine learning algorithms are crucial for the increasingly common setting in which personal data, such as medical or financial records, are analyzed. We provide general techniques to produce privacy-preserving approximations of c
In this work, we study the large-scale pretraining of BERT-Large with differentially private SGD (DP-SGD). We show that combined with a careful implementation, scaling up the batch size to millions (i.e., mega-batches) improves the utility of the DP-
Densest subgraph detection is a fundamental graph mining problem, with a large number of applications. There has been a lot of work on efficient algorithms for finding the densest subgraph in massive networks. However, in many domains, the network is