ﻻ يوجد ملخص باللغة العربية
Ensuring the privacy of sensitive data used to train modern machine learning models is of paramount importance in many areas of practice. One approach to study these concerns is through the lens of differential privacy. In this framework, privacy guarantees are generally obtained by perturbing models in such a way that specifics of data used to train the model are made ambiguous. A particular instance of this approach is through a teacher-student framework, wherein the teacher, who owns the sensitive data, provides the student with useful, but noisy, information, hopefully allowing the student model to perform well on a given task without access to particular features of the sensitive data. Because stronger privacy guarantees generally involve more significant perturbation on the part of the teacher, deploying existing frameworks fundamentally involves a trade-off between students performance and privacy guarantee. One of the most important techniques used in previous works involves an ensemble of teacher models, which return information to a student based on a noisy voting procedure. In this work, we propose a novel voting mechanism with smooth sensitivity, which we call Immutable Noisy ArgMax, that, under certain conditions, can bear very large random noising from the teacher without affecting the useful information transferred to the student. Compared with previous work, our approach improves over the state-of-the-art methods on all measures, and scale to larger tasks with both better performance and stronger privacy ($epsilon approx 0$). This new proposed framework can be applied with any machine learning models, and provides an appealing solution for tasks that requires training on a large amount of data.
This paper considers the problem of differentially private semi-supervised transfer learning. The notion of membership-mapping is developed using measure theory basis to learn data representation via a fuzzy membership function. An alternative concep
In this paper, we study efficient differentially private alternating direction methods of multipliers (ADMM) via gradient perturbation for many machine learning problems. For smooth convex loss functions with (non)-smooth regularization, we propose t
Privacy-preserving machine learning algorithms are crucial for the increasingly common setting in which personal data, such as medical or financial records, are analyzed. We provide general techniques to produce privacy-preserving approximations of c
In this work, we study the large-scale pretraining of BERT-Large with differentially private SGD (DP-SGD). We show that combined with a careful implementation, scaling up the batch size to millions (i.e., mega-batches) improves the utility of the DP-
Densest subgraph detection is a fundamental graph mining problem, with a large number of applications. There has been a lot of work on efficient algorithms for finding the densest subgraph in massive networks. However, in many domains, the network is