ﻻ يوجد ملخص باللغة العربية
When people observe events, they are able to abstract key information and build concise summaries of what is happening. These summaries include contextual and semantic information describing the important high-level details (what, where, who and how) of the observed event and exclude background information that is deemed unimportant to the observer. With this in mind, the descriptions people generate for videos of different dynamic events can greatly improve our understanding of the key information of interest in each video. These descriptions can be captured in captions that provide expanded attributes for video labeling (e.g. actions/objects/scenes/sentiment/etc.) while allowing us to gain new insight into what people find important or necessary to summarize specific events. Existing caption datasets for video understanding are either small in scale or restricted to a specific domain. To address this, we present the Spoken Moments (S-MiT) dataset of 500k spoken captions each attributed to a unique short video depicting a broad range of different events. We collect our descriptions using audio recordings to ensure that they remain as natural and concise as possible while allowing us to scale the size of a large classification dataset. In order to utilize our proposed dataset, we present a novel Adaptive Mean Margin (AMM) approach to contrastive learning and evaluate our models on video/caption retrieval on multiple datasets. We show that our AMM approach consistently improves our results and that models trained on our Spoken Moments dataset generalize better than those trained on other video-caption datasets.
Current methods for learning visually grounded language from videos often rely on text annotation, such as human generated captions or machine generated automatic speech recognition (ASR) transcripts. In this work, we introduce the Audio-Video Langua
Our objective is to transform a video into a set of discrete audio-visual objects using self-supervised learning. To this end, we introduce a model that uses attention to localize and group sound sources, and optical flow to aggregate information ove
The intuitive interaction between the audio and visual modalities is valuable for cross-modal self-supervised learning. This concept has been demonstrated for generic audiovisual tasks like video action recognition and acoustic scene classification.
The de-facto approach to many vision tasks is to start from pretrained visual representations, typically learned via supervised training on ImageNet. Recent methods have explored unsupervised pretraining to scale to vast quantities of unlabeled image
Video captioning is an essential technology to understand scenes and describe events in natural language. To apply it to real-time monitoring, a system needs not only to describe events accurately but also to produce the captions as soon as possible.