ﻻ يوجد ملخص باللغة العربية
Our objective is to transform a video into a set of discrete audio-visual objects using self-supervised learning. To this end, we introduce a model that uses attention to localize and group sound sources, and optical flow to aggregate information over time. We demonstrate the effectiveness of the audio-visual object embeddings that our model learns by using them for four downstream speech-oriented tasks: (a) multi-speaker sound source separation, (b) localizing and tracking speakers, (c) correcting misaligned audio-visual data, and (d) active speaker detection. Using our representation, these tasks can be solved entirely by training on unlabeled video, without the aid of object detectors. We also demonstrate the generality of our method by applying it to non-human speakers, including cartoons and puppets.Our model significantly outperforms other self-supervised approaches, and obtains performance competitive with methods that use supervised face detection.
We propose a general framework for self-supervised learning of transferable visual representations based on Video-Induced Visual Invariances (VIVI). We consider the implicit hierarchy present in the videos and make use of (i) frame-level invariances
In this paper, we propose a novel approach for generalized zero-shot learning in a multi-modal setting, where we have novel classes of audio/video during testing that are not seen during training. We use the semantic relatedness of text embeddings as
We tackle the problem of learning object detectors without supervision. Differently from weakly-supervised object detection, we do not assume image-level class labels. Instead, we extract a supervisory signal from audio-visual data, using the audio c
We describe a system for large-scale audiovisual translation and dubbing, which translates videos from one language to another. The source languages speech content is transcribed to text, translated, and automatically synthesized into target language
We present a framework for learning multimodal representations from unlabeled data using convolution-free Transformer architectures. Specifically, our Video-Audio-Text Transformer (VATT) takes raw signals as inputs and extracts multimodal representat