ترغب بنشر مسار تعليمي؟ اضغط هنا

Integrating van der Waals materials on paper substrates for electrical and optical applications

84   0   0.0 ( 0 )
 نشر من قبل Andres Castellanos-Gomez
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Paper holds the promise to replace silicon substrates in applications like internet of things or disposable electronics that require ultra-low-cost electronic components and an environmentally friendly electronic waste management. In the last years, spurred by the abovementioned properties of paper as a substrate and the exceptional electronic, mechanical and optical properties of van der Waals (vdW) materials, many research groups have worked towards the integration of vdW materials-based devices on paper. Recently, a method to deposit a continuous film of densely packed interconnects of vdW materials on paper by simply rubbing the vdW crystals against the rough surface of paper has been presented. This method utilizes the weak interlayer vdW interactions and allows cleaving of the crystals into micro platelets through the abrasion against the paper. Here, we aim to illustrate the general character and the potential of this technique by fabricating films of 39 different vdW materials (including superconductors, semi-metals, semiconductors, and insulators) on standard copier paper. We have thoroughly characterized their optical properties showing their high optical quality: one can easily resolve the absorption band edge of semiconducting vdW materials and even the excitonic features present in some vdW materials with high exciton binding energy. We also measured the electrical resistivity for several vdW materials films on paper finding exceptionally low values, which are in some cases, orders of magnitude lower than those reported for analogous films produced by inkjet printing. We finally demonstrate the fabrication of field-effect devices with vdW materials on paper using the paper substrate as an ionic gate.



قيم البحث

اقرأ أيضاً

Paper has the potential to dramatically reduce the cost of electronic components. In fact, paper is 10 000 times cheaper than crystalline silicon, motivating the research to integrate electronic materials on paper substrates. Among the different elec tronic materials, van der Waals materials are attracting the interest of the scientific community working on paper-based electronics because of the combination of high electrical performance and mechanical flexibility. Up to now, different methods have been developed to pattern conducting, semiconducting and insulating van der Waals materials on paper but the integration of superconductors remains elusive. Here, the deposition of NbSe2, an illustrative van der Waals superconductor, on standard copy paper is demonstrated. The deposited NbSe2 films on paper display superconducting properties (e.g. observation of Meissner effect and resistance drop to zero-resistance state when cooled down below its critical temperature) similar to those of bulk NbSe2.
The exfoliation of two naturally occurring van der Waals minerals, graphite and molybdenite, arouse an unprecedented level of interest by the scientific community and shaped a whole new field of research: 2D materials research. Several years later, t he family of van der Waals materials that can be exfoliated to isolate 2D materials keeps growing, but most of them are synthetic. Interestingly, in nature plenty of naturally occurring van der Waals minerals can be found with a wide range of chemical compositions and crystal structures whose properties are mostly unexplored so far. This Perspective aims to provide an overview of different families of van der Waals minerals to stimulate their exploration in the 2D limit.
Metasurfaces with strongly anisotropic optical properties can support deep subwavelength-scale confined electromagnetic waves (polaritons) that promise opportunities for controlling light in photonic and optoelectronic applications. We develop a mid- infrared hyperbolic metasurface by nanostructuring a thin layer of hexagonal boron nitride supporting deep subwavelength-scale phonon polaritons that propagate with in-plane hyperbolic dispersion. By applying an infrared nanoimaging technique, we visualize the concave (anomalous) wavefronts of a diverging polariton beam, which represent a landmark feature of hyperbolic polaritons. The results illustrate how near-field microscopy can be applied to reveal the exotic wavefronts of polaritons in anisotropic materials, and demonstrate that nanostructured van der Waals materials can form a highly variable and compact platform for hyperbolic infrared metasurface devices and circuits.
2D intercorrelated ferroelectrics, exhibiting a coupled in-plane and out-of-plane ferroelectricity, is a fundamental phenomenon in the field of condensed-mater physics. The current research is based on the paradigm of bi-directional inversion asymmet ry in single-layers, which restricts 2D intercorrelated ferroelectrics to extremely few systems. Herein, we propose a new scheme for achieving 2D intercorrelated ferroelectrics using van der Waals (vdW) interaction, and apply this scheme to a vast family of 2D vdW materials. Using first-principles, we demonstrate that 2D vdW multilayers-for example, BN, MoS2, InSe, CdS, PtSe2, TI2O, SnS2, Ti2CO2 etc.- can exhibit coupled in-plane and out-of-plane ferroelectricity, thus yielding 2D intercorrelated ferroelectricsferroelectric physics. We further predict that such intercorrelated ferroelectrics could demonstrate many distinct properties, for example, electrical full control of spin textures in trilayer PtSe2 and electrical permanent control of valley-contrasting physics in four-layer VS2. Our finding opens a new direction for 2D intercorrelated ferroelectric research.
The recently emerged organohalide perovskites (e.g., CH3NH3PbI3) have drawn intense attention for high efficiency solar cells. However, with a considerable solubility in many solvents, these perovskites are not typically compatible with conventional lithography processes for more complicated device fabrications that are important for both fundamental studies and technological applications. Here we report the creation of novel heterojunction devices based on perovskites and two-dimensional (2D) crystals by taking advantage of the layered characteristic of lead iodide (PbI2) and vapor phase intercalation. We show a graphene/perovskite/graphene vertical stack can deliver a highest photoresponsivity of ~950 A/W and photoconductive gain of ~2200, and a graphene/WSe2/perovskite/graphene heterojunction can display a high on/off ratio (~10^6) transistor behavior with distinct gate-tunable diode characteristics and open-circuit voltages. Such unique perovskite-2D heterostructures have significant potential for future optoelectronic research and can enable broad possibilities with compositional tunability of organohalide perovskites and the versatility offered by diverse 2D materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا