ترغب بنشر مسار تعليمي؟ اضغط هنا

Van der Waals heterojunction devices based on organohalide perovskites and two-dimensional materials

76   0   0.0 ( 0 )
 نشر من قبل Hung-Chieh Cheng
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recently emerged organohalide perovskites (e.g., CH3NH3PbI3) have drawn intense attention for high efficiency solar cells. However, with a considerable solubility in many solvents, these perovskites are not typically compatible with conventional lithography processes for more complicated device fabrications that are important for both fundamental studies and technological applications. Here we report the creation of novel heterojunction devices based on perovskites and two-dimensional (2D) crystals by taking advantage of the layered characteristic of lead iodide (PbI2) and vapor phase intercalation. We show a graphene/perovskite/graphene vertical stack can deliver a highest photoresponsivity of ~950 A/W and photoconductive gain of ~2200, and a graphene/WSe2/perovskite/graphene heterojunction can display a high on/off ratio (~10^6) transistor behavior with distinct gate-tunable diode characteristics and open-circuit voltages. Such unique perovskite-2D heterostructures have significant potential for future optoelectronic research and can enable broad possibilities with compositional tunability of organohalide perovskites and the versatility offered by diverse 2D materials.

قيم البحث

اقرأ أيضاً

The van der Waals (vdW) force is a ubiquitous short-range interaction between atoms and molecules that underlies many fundamental phenomena. Early pairwise additive theories pioneered by Keesom, Debye, and London suggested the force to be monotonical ly attractive for separations larger than the vdW contact distance. However, seminal work by Lifshitz et al. predicted that quantum fluctuations can change the sign of vdW interactions from attractive to repulsive. Although recent experiments carried out in fluid environment have demonstrated the long-range counterpart the Casimir repulsion, it remains controversial whether the vdW repulsion exists, or is sufficiently strong to alter solid-state properties. Here we show that the atomic thickness and birefringent nature of two-dimensional (2D) materials, arising from their anisotropic dielectric responses, make them a versatile medium to tailor the many-body Lifshitz-vdW interactions at solid-state interfaces. Based on our theoretical prediction, we experimentally examine two heterointerface systems in which the vdW repulsion becomes comparable to the two-body attraction. We demonstrate that the in-plane movement of gold atoms on a sheet of freestanding graphene becomes nearly frictionless at room temperature. Repulsion between molecular solid and gold across graphene results in a new polymorph with enlarged out-of-plane lattice spacings. The possibility of creating repulsive energy barriers in nanoscale proximity to an uncharged solid surface offers technological opportunities such as single-molecule actuation and atomic assembly.
88 - Ya Feng , Henan Li , Taiki Inoue 2020
The synthesis of one-dimensional van der Waals heterostructures was realized recently, which opens up new possibilities for prospective applications in electronics and optoelectronics. The even reduced dimension will enable novel properties and furth er miniaturization beyond the capabilities of its two-dimensional counterparts have revealed. The natural doping results in p-type electrical characteristics for semiconducting single-walled carbon nanotubes, while n-type for molybdenum disulfide with conventional noble metal contacts. Therefore, we demonstrate here a one-dimensional heterostructure nanotube of 11-nm-wide, with the coaxial assembly of semiconducting single-walled carbon nanotube, insulating boron nitride nanotube, and semiconducting molybdenum disulfide nanotube which induces a radial semiconductor-insulator-semiconductor heterojunction. When opposite potential polarity was applied on semiconducting single-walled carbon nanotube and molybdenum disulfide nanotube, respectively, the rectifying effect was materialized.
The exfoliation of two naturally occurring van der Waals minerals, graphite and molybdenite, arouse an unprecedented level of interest by the scientific community and shaped a whole new field of research: 2D materials research. Several years later, t he family of van der Waals materials that can be exfoliated to isolate 2D materials keeps growing, but most of them are synthetic. Interestingly, in nature plenty of naturally occurring van der Waals minerals can be found with a wide range of chemical compositions and crystal structures whose properties are mostly unexplored so far. This Perspective aims to provide an overview of different families of van der Waals minerals to stimulate their exploration in the 2D limit.
Most of the studied two-dimensional (2D) materials have been obtained by exfoliation of van der Waals crystals. Recently, there has been growing interest in fabricating synthetic 2D crystals which have no layered bulk analogues. These efforts have be en focused mainly on the surface growth of molecules in high vacuum. Here, we report an approach to making 2D crystals of covalent solids by chemical conversion of van der Waals layers. As an example, we use 2D indium selenide (InSe) obtained by exfoliation and converted it by direct fluorination into indium fluoride (InF3), which has a non-layered, rhombohedral structure and therefore cannot be possibly obtained by exfoliation. The conversion of InSe into InF3 is found to be feasible for thicknesses down to three layers of InSe, and the obtained stable InF3 layers are doped with selenium. We study this new 2D material by optical, electron transport and Raman measurements and show that it is a semiconductor with a direct bandgap of 2.2 eV, exhibiting high optical transparency across the visible and infrared spectral ranges. We also demonstrate the scalability of our approach by chemical conversion of large-area, thin InSe laminates obtained by liquid exfoliation into InF3 films. The concept of chemical conversion of cleavable thin van der Waals crystals into covalently-bonded non-cleavable ones opens exciting prospects for synthesizing a wide variety of novel atomically thin covalent crystals.
Two-dimensional (2D) materials exhibit a number of improved mechanical, optical, electronic properties compared to their bulk counterparts. The absence of dangling bonds in the cleaved surfaces of these materials allows combining different 2D materia ls into van der Waals heterostructures to fabricate p-n junctions, photodetectors, 2D-2D ohmic contacts that show unexpected performances. These intriguing results are regularly summarized in comprehensive reviews. A strategy to tailor their properties even further and to observe novel quantum phenomena consists in the fabrication of superlattices whose unit cell is formed either by two dissimilar 2D materials or by a 2D material subjected to a periodical perturbation, each component contributing with different characteristics. Furthermore, in a 2D materials-based superlattice, the interlayer interaction between the layers mediated by van der Waals forces constitutes a key parameter to tune the global properties of the superlattice. The above-mentioned factors reflect the potential to devise countless combinations of van der Waals 2D materials based superlattices. In the present feature article, we explain in detail the state-of-the-art of 2D materials-based superlattices and we describe the different methods to fabricate them, classified as vertical stacking, intercalation with atoms or molecules, moire patterning, strain engineering and lithographic design. We also aim to highlight some of the specific applications for each type of superlattices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا