ترغب بنشر مسار تعليمي؟ اضغط هنا

Gamma-convergence of a gradient-flow structure to a non-gradient-flow structure

91   0   0.0 ( 0 )
 نشر من قبل Mark A. Peletier
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the asymptotic behaviour of a gradient system in a regime in which the driving energy becomes singular. For this system gradient-system convergence concepts are ineffective. We characterize the limiting behaviour in a different way, by proving $Gamma$-convergence of the so-called energy-dissipation functional, which combines the gradient-system components of energy and dissipation in a single functional. The $Gamma$-limit of these functionals again characterizes a variational evolution, but this limit functional is not the energy-dissipation functional of any gradient system. The system in question describes the diffusion of a particle in a one-dimensional double-well energy landscape, in the limit of small noise. The wells have different depth, and in the small-noise limit the process converges to a Markov process on a two-state system, in which jumps only happen from the higher to the lower well. This transmutation of a gradient system into a variational evolution of non-gradient type is a model for how many one-directional chemical reactions emerge as limit of reversible ones. The $Gamma$-convergence proved in this paper both identifies the `fate of the gradient system for these reactions and the variational structure of the limiting irreversible reactions.



قيم البحث

اقرأ أيضاً

A nonlinear parabolic equation of sixth order is analyzed. The equation arises as a reduction of a model from quantum statistical mechanics, and also as the gradient flow of a second-order information functional with respect to the $L^2$-Wasserstein metric. First, we prove global existence of weak solutions for initial conditions of finite entropy by means of the time-discrete minimizing movement scheme. Second, we calculate the linearization of the dynamics around the unique stationary solution, for which we can explicitly compute the entire spectrum. A key element in our approach is a particular relation between the entropy, the Fisher information and the second order functional that generates the gradient flow under consideration.
In this paper we introduce a general abstract formulation of a variational thermomechanical model, by means of a unified derivation via a generalization of the principle of virtual powers for all the variables of the system, including the thermal one . In particular, choosing as thermal variable the entropy of the system, and as driving functional the internal energy, we get a gradient flow structure (in a suitable abstract setting) for the whole nonlinear PDE system. We prove a global in time existence of (weak) solutions result for the Cauchy problem associated to the abstract PDE system as well as uniqueness in case of suitable smoothness assumptions on the functionals.
We prove the existence of weak solutions to a system of two diffusion equations that are coupled by a pointwise volume constraint. The time evolution is given by gradient dynamics for a free energy functional. Our primary example is a model for the d emixing of polymers, the corresponding energy is the one of Flory, Huggins and deGennes. Due to the non-locality in the equations, the dynamics considered here is qualitatively different from the one found in the formally related Cahn-Hilliard equations. Our angle of attack is from the theory of optimal mass transport, that is, we consider the evolution equations for the two components as two gradient flows in the Wasserstein distance with one joint energy functional that has the volume constraint built in. The main difference to our previous work arXiv:1712.06446 is the nonlinearity of the energy density in the gradient part, which becomes singular at the interface between pure and mixed phases.
An extended Maxwell viscoelastic model with a relaxation parameter is studied from mathematical and numerical points of view. It is shown that the model has a gradient flow property with respect to a viscoelastic energy. Based on the gradient flow st ructure, a structure-preserving time-discrete model is proposed and existence of a unique solution is proved. Moreover, a structure-preserving P1/P0 finite element scheme is presented and its stability in the sense of energy is shown by using its discrete gradient flow structure. As typical viscoelastic phenomena, two-dimensional numerical examples by the proposed scheme for a creep deformation and a stress relaxation are shown and the effects of the relaxation parameter are investigated.
We consider a Fokker-Planck equation which is coupled to an externally given time-dependent constraint on its first moment. This constraint introduces a Lagrange-multiplier which renders the equation nonlocal and nonlinear. In this paper we exploit an interpretation of this equation as a Wasserstein gradient flow of a free energy ${mathcal{F}}$ on a time-constrained manifold. First, we prove existence of solutions by passing to the limit in an explicit Euler scheme obtained by minimizing $h {mathcal{F}}(varrho)+W_2^2(varrho^0,varrho)$ among all $varrho$ satisfying the constraint for some $varrho^0$ and time-step $h>0$. Second, we provide quantitative estimates for the rate of convergence to equilibrium when the constraint converges to a constant. The proof is based on the investigation of a suitable relative entropy with respect to minimizers of the free energy chosen according to the constraint. The rate of convergence can be explicitly expressed in terms of constants in suitable logarithmic Sobolev inequalities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا