ترغب بنشر مسار تعليمي؟ اضغط هنا

Gradient Flow Structure of a Multidimensional Nonlinear Sixth Order Quantum-Diffusion Equation

213   0   0.0 ( 0 )
 نشر من قبل Daniel Matthes
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A nonlinear parabolic equation of sixth order is analyzed. The equation arises as a reduction of a model from quantum statistical mechanics, and also as the gradient flow of a second-order information functional with respect to the $L^2$-Wasserstein metric. First, we prove global existence of weak solutions for initial conditions of finite entropy by means of the time-discrete minimizing movement scheme. Second, we calculate the linearization of the dynamics around the unique stationary solution, for which we can explicitly compute the entire spectrum. A key element in our approach is a particular relation between the entropy, the Fisher information and the second order functional that generates the gradient flow under consideration.



قيم البحث

اقرأ أيضاً

We study the Cauchy problem for $p$-adic nonlinear evolutionary pseudo-differential equations for complex-valued functions of a real positive time variable and p-adic spatial variables. Among the equations under consideration there is the p-adic anal og of the porous medium equation (or more generally, the nonlinear filtration equation) which arise in numerous application in mathematical physics and mathematical biology. Our approach is based on the construction of a linear Markov semigroup on a p-adic ball and the proof of m-accretivity of the appropriate nonlinear operator. The latter result is equivalent to the existence and uniqueness of a mild solution of the Cauchy problem of a nonlinear equation of the porous medium type.
We study the asymptotic behaviour of a gradient system in a regime in which the driving energy becomes singular. For this system gradient-system convergence concepts are ineffective. We characterize the limiting behaviour in a different way, by provi ng $Gamma$-convergence of the so-called energy-dissipation functional, which combines the gradient-system components of energy and dissipation in a single functional. The $Gamma$-limit of these functionals again characterizes a variational evolution, but this limit functional is not the energy-dissipation functional of any gradient system. The system in question describes the diffusion of a particle in a one-dimensional double-well energy landscape, in the limit of small noise. The wells have different depth, and in the small-noise limit the process converges to a Markov process on a two-state system, in which jumps only happen from the higher to the lower well. This transmutation of a gradient system into a variational evolution of non-gradient type is a model for how many one-directional chemical reactions emerge as limit of reversible ones. The $Gamma$-convergence proved in this paper both identifies the `fate of the gradient system for these reactions and the variational structure of the limiting irreversible reactions.
In this paper we study some key effects of a discontinuous forcing term in a fourth order wave equation on a bounded domain, modeling the adhesion of an elastic beam with a substrate through an elastic-breakable interaction. By using a spectral dec omposition method we show that the main effects induced by the nonlinearity at the transition from attached to detached states can be traced in a loss of regularity of the solution and in a migration of the total energy through the scales.
78 - Renjun Duan , Shuangqian Liu , 2021
In the paper, we study the plane Couette flow of a rarefied gas between two parallel infinite plates at $y=pm L$ moving relative to each other with opposite velocities $(pm alpha L,0,0)$ along the $x$-direction. Assuming that the stationary state tak es the specific form of $F(y,v_x-alpha y,v_y,v_z)$ with the $x$-component of the molecular velocity sheared linearly along the $y$-direction, such steady flow is governed by a boundary value problem on a steady nonlinear Boltzmann equation driven by an external shear force under the homogeneous non-moving diffuse reflection boundary condition. In case of the Maxwell molecule collisions, we establish the existence of spatially inhomogeneous non-equilibrium stationary solutions to the steady problem for any small enough shear rate $alpha>0$ via an elaborate perturbation approach using Caflischs decomposition together with Guos $L^inftycap L^2$ theory. The result indicates the polynomial tail at large velocities for the stationary distribution. Moreover, the large time asymptotic stability of the stationary solution with an exponential convergence is also obtained and as a consequence the nonnegativity of the steady profile is justified.
We study a non-local version of the Cahn-Hilliard dynamics for phase separation in a two-component incompressible and immiscible mixture with linear mobilities. In difference to the celebrated local model with nonlinear mobility, it is only assumed t hat the divergences of the two fluxes --- but not necessarily the fluxes themselves --- annihilate each other. Our main result is a rigorous proof of existence of weak solutions. The starting point is the formal representation of the dynamics as a constrained gradient flow in the Wasserstein metric. We then show that time-discrete approximations by means of the incremental minimizing movement scheme converge to a weak solution in the limit. Further, we compare the non-local model to the classical Cahn-Hilliard model in numerical experiments. Our results illustrate the significant speed-up in the decay of the free energy due to the higher degree of freedom for the velocity fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا