ترغب بنشر مسار تعليمي؟ اضغط هنا

The gradient flow structure of an extended Maxwell viscoelastic model and a structure-preserving finite element scheme

63   0   0.0 ( 0 )
 نشر من قبل Hirofumi Notsu
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

An extended Maxwell viscoelastic model with a relaxation parameter is studied from mathematical and numerical points of view. It is shown that the model has a gradient flow property with respect to a viscoelastic energy. Based on the gradient flow structure, a structure-preserving time-discrete model is proposed and existence of a unique solution is proved. Moreover, a structure-preserving P1/P0 finite element scheme is presented and its stability in the sense of energy is shown by using its discrete gradient flow structure. As typical viscoelastic phenomena, two-dimensional numerical examples by the proposed scheme for a creep deformation and a stress relaxation are shown and the effects of the relaxation parameter are investigated.



قيم البحث

اقرأ أيضاً

In this work we develop a fictitious domain method for the Stokes problem which allows computations in domains whose boundaries do not depend on the mesh. The method is based on the ideas of Xfem and has been first introduced for the Poisson problem. The fluid part is treated by a mixed finite element method, and a Dirichlet condition is imposed by a Lagrange multiplier on an immersed structure localized by a level-set function. A stabilization technique is carried out in order to get the convergence for this multiplier. The latter represents the forces that the fluid applies on the structure. The aim is to perform fluid-structure simulations for which these forces have a central role. We illustrate the capacities of the method by extending it to the incompressible Navier-Stokes equations coupled with a moving rigid solid.
A thermodynamically consistent phase-field model is introduced for simulating motion and shape transformation of vesicles under flow conditions. In particular, a general slip boundary condition is used to describe the interaction between vesicles and the wall of the fluid domain. A second-order accurate in both space and time C0 finite element method is proposed to solve the model governing equations. Various numerical tests confirm the convergence, energy stability, and conservation of mass and surface area of cells of the proposed scheme. Vesicles with different mechanical properties are also used to explain the pathological risk for patients with sickle cell disease.
The enrichment formulation of double-interpolation finite element method (DFEM) is developed in this paper. DFEM is first proposed by Zheng emph{et al} (2011) and it requires two stages of interpolation to construct the trial function. The first stag e of interpolation is the same as the standard finite element interpolation. Then the interpolation is reproduced by an additional procedure using the nodal values and nodal gradients which are derived from the first stage as interpolants. The re-constructed trial functions are now able to produce continuous nodal gradients, smooth nodal stress without post-processing and higher order basis without increasing the total degrees of freedom. Several benchmark numerical examples are performed to investigate accuracy and efficiency of DFEM and enriched DFEM. When compared with standard FEM, super-convergence rate and better accuracy are obtained by DFEM. For the numerical simulation of crack propagation, better accuracy is obtained in the evaluation of displacement norm, energy norm and the stress intensity factor.
For the Hodge--Laplace equation in finite element exterior calculus, we introduce several families of discontinuous Galerkin methods in the extended Galerkin framework. For contractible domains, this framework utilizes seven fields and provides a uni fying inf-sup analysis with respect to all discretization and penalty parameters. It is shown that the proposed methods can be hybridized as a reduced two-field formulation.
We study the asymptotic behaviour of a gradient system in a regime in which the driving energy becomes singular. For this system gradient-system convergence concepts are ineffective. We characterize the limiting behaviour in a different way, by provi ng $Gamma$-convergence of the so-called energy-dissipation functional, which combines the gradient-system components of energy and dissipation in a single functional. The $Gamma$-limit of these functionals again characterizes a variational evolution, but this limit functional is not the energy-dissipation functional of any gradient system. The system in question describes the diffusion of a particle in a one-dimensional double-well energy landscape, in the limit of small noise. The wells have different depth, and in the small-noise limit the process converges to a Markov process on a two-state system, in which jumps only happen from the higher to the lower well. This transmutation of a gradient system into a variational evolution of non-gradient type is a model for how many one-directional chemical reactions emerge as limit of reversible ones. The $Gamma$-convergence proved in this paper both identifies the `fate of the gradient system for these reactions and the variational structure of the limiting irreversible reactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا