ﻻ يوجد ملخص باللغة العربية
We derive a series of quantitative bulk-boundary correspondences for 3D bosonic and fermionic symmetry-protected topological (SPT) phases under the assumption that the surface is gapped, symmetric and topologically ordered, i.e., a symmetry-enriched topological (SET) state. We consider those SPT phases that are protected by the mirror symmetry and continuous symmetries that form a group of $U(1)$, $SU(2)$ or $SO(3)$. In particular, the fermionic cases correspond to a crystalline version of 3D topological insulators and topological superconductors in the famous ten-fold-way classification, with the time-reversal symmetry replaced by the mirror symmetry and with strong interaction taken into account. For surface SETs, the most general interplay between symmetries and anyon excitations is considered. Based on the previously proposed dimension reduction and folding approaches, we re-derive the classification of bulk SPT phases and define a emph{complete} set of bulk topological invariants for every symmetry group under consideration, and then derive explicit expressions of the bulk invariants in terms of surface topological properties (such as topological spin, quantum dimension) and symmetry properties (such as mirror fractionalization, fractional charge or spin). These expressions are our quantitative bulk-boundary correspondences. Meanwhile, the bulk topological invariants can be interpreted as emph{anomaly indicators} for the surface SETs which carry t Hooft anomalies of the associated symmetries whenever the bulk is topologically non-trivial. Hence, the quantitative bulk-boundary correspondences provide an easy way to compute the t Hooft anomalies of the surface SETs. Moreover, our anomaly indicators are complete. Our derivations of the bulk-boundary correspondences and anomaly indicators are explicit and physically transparent.
We study anomalies in time-reversal ($mathbb{Z}_2^T$) and $U(1)$ symmetric topological orders. In this context, an anomalous topological order is one that cannot be realized in a strictly $(2+1)$-D system but can be realized on the surface of a $(3+1
The classification and lattice model construction of symmetry protected topological (SPT) phases in interacting fermion systems are very interesting but challenging. In this paper, we give a systematic fixed point wave function construction of fermio
Topological phases of quantum matter defy characterization by conventional order parameters but can exhibit quantized electro-magnetic response and/or protected surface states. We examine such phenomena in a model for three-dimensional correlated com
The computation of certain obstruction functions is a central task in classifying interacting fermionic symmetry-protected topological (SPT) phases. Using techniques in group-cohomology theory, we develop an algorithm to accelerate this computation.
Fractional statistics is one of the most intriguing features of topological phases in 2D. In particular, the so-called non-Abelian statistics plays a crucial role towards realizing universal topological quantum computation. Recently, the study of top