ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomaly indicators and bulk-boundary correspondences for 3D interacting topological crystalline phases with mirror and continuous symmetries

101   0   0.0 ( 0 )
 نشر من قبل Chenjie Wang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive a series of quantitative bulk-boundary correspondences for 3D bosonic and fermionic symmetry-protected topological (SPT) phases under the assumption that the surface is gapped, symmetric and topologically ordered, i.e., a symmetry-enriched topological (SET) state. We consider those SPT phases that are protected by the mirror symmetry and continuous symmetries that form a group of $U(1)$, $SU(2)$ or $SO(3)$. In particular, the fermionic cases correspond to a crystalline version of 3D topological insulators and topological superconductors in the famous ten-fold-way classification, with the time-reversal symmetry replaced by the mirror symmetry and with strong interaction taken into account. For surface SETs, the most general interplay between symmetries and anyon excitations is considered. Based on the previously proposed dimension reduction and folding approaches, we re-derive the classification of bulk SPT phases and define a emph{complete} set of bulk topological invariants for every symmetry group under consideration, and then derive explicit expressions of the bulk invariants in terms of surface topological properties (such as topological spin, quantum dimension) and symmetry properties (such as mirror fractionalization, fractional charge or spin). These expressions are our quantitative bulk-boundary correspondences. Meanwhile, the bulk topological invariants can be interpreted as emph{anomaly indicators} for the surface SETs which carry t Hooft anomalies of the associated symmetries whenever the bulk is topologically non-trivial. Hence, the quantitative bulk-boundary correspondences provide an easy way to compute the t Hooft anomalies of the surface SETs. Moreover, our anomaly indicators are complete. Our derivations of the bulk-boundary correspondences and anomaly indicators are explicit and physically transparent.



قيم البحث

اقرأ أيضاً

We study anomalies in time-reversal ($mathbb{Z}_2^T$) and $U(1)$ symmetric topological orders. In this context, an anomalous topological order is one that cannot be realized in a strictly $(2+1)$-D system but can be realized on the surface of a $(3+1 )$-D symmetry-protected topological (SPT) phase. To detect these anomalies we propose several anomaly indicators --- functions that take as input the algebraic data of a symmetric topological order and that output a number indicating the presence or absence of an anomaly. We construct such indicators for both structures of the full symmetry group, i.e. $U(1)rtimesmathbb{Z}_2^T$ and $U(1)timesmathbb{Z}_2^T$, and for both bosonic and fermionic topological orders. In all cases we conjecture that our indicators are complete in the sense that the anomalies they detect are in one-to-one correspondence with the known classification of $(3+1)$-D SPT phases with the same symmetry. We also show that one of our indicators for bosonic topological orders has a mathematical interpretation as a partition function for the bulk $(3+1)$-D SPT phase on a particular manifold and in the presence of a particular background gauge field for the $U(1)$ symmetry.
The classification and lattice model construction of symmetry protected topological (SPT) phases in interacting fermion systems are very interesting but challenging. In this paper, we give a systematic fixed point wave function construction of fermio nic SPT (FSPT) states for generic fermionic symmetry group $G_f=mathbb{Z}_2^f times_{omega_2} G_b$ which is a central extension of bosonic symmetry group $G_b$ (may contain time reversal symmetry) by the fermion parity symmetry group $mathbb{Z}_2^f = {1,P_f}$. Our construction is based on the concept of equivalence class of finite depth fermionic symmetric local unitary (FSLU) transformations and decorating symmetry domain wall picture, subjected to certain obstructions. We will also discuss the systematical construction and classification of boundary anomalous SPT (ASPT) states which leads to a trivialization of the corresponding bulk FSPT states. Thus, we conjecture that the obstruction-free and trivialization-free constructions naturally lead to a classification of FSPT phases. Each fixed-point wave function admits an exactly solvable commuting-projector Hamiltonian. We believe that our classification scheme can be generalized to point/space group symmetry as well as continuum Lie group symmetry.
Topological phases of quantum matter defy characterization by conventional order parameters but can exhibit quantized electro-magnetic response and/or protected surface states. We examine such phenomena in a model for three-dimensional correlated com plex oxides, the pyrochlore iridates. The model realizes interacting topological insulators with and without time-reversal symmetry, and topological Weyl semimetals. We use cellular dynamical mean field theory, a method that incorporates quantum-many-body effects and allows us to evaluate the magneto-electric topological response coefficient in correlated systems. This invariant is used to unravel the presence of an interacting axion insulator absent within a simple mean field study. We corroborate our bulk results by studying the evolution of the topological boundary states in the presence of interactions. Consequences for experiments and for the search for correlated materials with symmetry-protected topological order are given.
The computation of certain obstruction functions is a central task in classifying interacting fermionic symmetry-protected topological (SPT) phases. Using techniques in group-cohomology theory, we develop an algorithm to accelerate this computation. Mathematically, cochains in the cohomology of the symmetry group, which are used to enumerate the SPT phases, can be expressed equivalently in different linear basis, known as the resolutions of the group. By expressing the cochains in a reduced resolution containing much fewer basis than the choice commonly used in previous studies, the computational cost is drastically reduced. In particular, it reduces the computational cost for infinite discrete symmetry groups, like the wallpaper groups and space groups, from infinite to finite. As examples, we compute the classification of two-dimensional interacting fermionic SPT phases, for all 17 wallpaper symmetry groups.
Fractional statistics is one of the most intriguing features of topological phases in 2D. In particular, the so-called non-Abelian statistics plays a crucial role towards realizing universal topological quantum computation. Recently, the study of top ological phases has been extended to 3D and it has been proposed that loop-like extensive objects can also carry fractional statistics. In this work, we systematically study the so-called three-loop braiding statistics for loop-like excitations for 3D fermionic topological phases. Most surprisingly, we discovered new types of non-Abelian three-loop braiding statistics that can only be realized in fermionic systems (or equivalently bosonic systems with fermionic particles). The simplest example of such non-Abelian braiding statistics can be realized in interacting fermionic systems with a gauge group $mathbb{Z}_2 times mathbb{Z}_8$ or $mathbb{Z}_4 times mathbb{Z}_4$, and the physical origin of non-Abelian statistics can be viewed as attaching an open Majorana chain onto a pair of linked loops, which will naturally reduce to the well known Ising non-Abelian statistics via the standard dimension reduction scheme. Moreover, due to the correspondence between gauge theories with fermionic particles and classifying fermionic symmetry-protected topological (FSPT) phases with unitary symmetries, our study also give rise to an alternative way to classify FSPT phases with unitary symmetries. We further compare the classification results for FSPT phases with arbitrary Abelian total symmetry $G^f$ and find systematical agreement with previous studies using other methods. We believe that the proposed framework of understanding three-loop braiding statistics (including both Abelian and non-Abelian cases) in interacting fermion systems applies for generic fermonic topological phases in 3D.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا