ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Abelian Three-Loop Braiding Statistics for 3D Fermionic Topological Phases

107   0   0.0 ( 0 )
 نشر من قبل Zhengcheng Gu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fractional statistics is one of the most intriguing features of topological phases in 2D. In particular, the so-called non-Abelian statistics plays a crucial role towards realizing universal topological quantum computation. Recently, the study of topological phases has been extended to 3D and it has been proposed that loop-like extensive objects can also carry fractional statistics. In this work, we systematically study the so-called three-loop braiding statistics for loop-like excitations for 3D fermionic topological phases. Most surprisingly, we discovered new types of non-Abelian three-loop braiding statistics that can only be realized in fermionic systems (or equivalently bosonic systems with fermionic particles). The simplest example of such non-Abelian braiding statistics can be realized in interacting fermionic systems with a gauge group $mathbb{Z}_2 times mathbb{Z}_8$ or $mathbb{Z}_4 times mathbb{Z}_4$, and the physical origin of non-Abelian statistics can be viewed as attaching an open Majorana chain onto a pair of linked loops, which will naturally reduce to the well known Ising non-Abelian statistics via the standard dimension reduction scheme. Moreover, due to the correspondence between gauge theories with fermionic particles and classifying fermionic symmetry-protected topological (FSPT) phases with unitary symmetries, our study also give rise to an alternative way to classify FSPT phases with unitary symmetries. We further compare the classification results for FSPT phases with arbitrary Abelian total symmetry $G^f$ and find systematical agreement with previous studies using other methods. We believe that the proposed framework of understanding three-loop braiding statistics (including both Abelian and non-Abelian cases) in interacting fermion systems applies for generic fermonic topological phases in 3D.



قيم البحث

اقرأ أيضاً

Topological qauntum field theory(TQFT) is a very powerful theoretical tool to study topological phases and phase transitions. In $2+1$D, it is well known that the Chern-Simons theory captures all the universal topological data of topological phases, e.g., quasi-particle braiding statistics, chiral central charge and even provides us a deep insight for the nature of topological phase transitions. Recently, topological phases of quantum matter are also intensively studied in $3+1$D and it has been shown that loop like excitation obeys the so-called three-loop-braiding statistics. In this paper, we will try to establish a TQFT framework to understand the quantum statistics of particle and loop like excitation in $3+1$D. We will focus on Abelian topological phases for simplicity, however, the general framework developed here is not limited to Abelian topological phases.
We study Abelian braiding statistics of loop excitations in three-dimensional (3D) gauge theories with fermionic particles and the closely related problem of classifying 3D fermionic symmetry-protected topological (FSPT) phases with unitary symmetrie s. It is known that the two problems are related by turning FSPT phases into gauge theories through gauging the global symmetry of the former. We show that there exist certain types of Abelian loop braiding statistics that are allowed only in the the presence of fermionic particles, which correspond to 3D intrinsic FSPT phases, i.e., those that do not stem from bosonic SPT phases. While such intrinsic FSPT phases are ubiquitous in 2D systems and in 3D systems with anti-unitary symmetries, their existence in 3D systems with unitary symmetries was not confirmed previously due to the fact that strong interaction is necessary to realize them. We show that the simplest unitary symmetry to support 3D intrinsic FSPT phases is $mathbb{Z}_2timesmathbb{Z}_4$. To establish the results, we first derive a complete set of physical constraints on Abelian loop braiding statistics. Solving the constraints, we obtain all possible Abelian loop braiding statistics in 3D gauge theories, including those that correspond to intrinsic FSPT phases. Then, we construct exactly soluble state-sum models to realize the loop braiding statistics. These state-sum models generalize the well-known Crane-Yetter and Dijkgraaf-Witten models.
The computation of certain obstruction functions is a central task in classifying interacting fermionic symmetry-protected topological (SPT) phases. Using techniques in group-cohomology theory, we develop an algorithm to accelerate this computation. Mathematically, cochains in the cohomology of the symmetry group, which are used to enumerate the SPT phases, can be expressed equivalently in different linear basis, known as the resolutions of the group. By expressing the cochains in a reduced resolution containing much fewer basis than the choice commonly used in previous studies, the computational cost is drastically reduced. In particular, it reduces the computational cost for infinite discrete symmetry groups, like the wallpaper groups and space groups, from infinite to finite. As examples, we compute the classification of two-dimensional interacting fermionic SPT phases, for all 17 wallpaper symmetry groups.
Given a (2+1)D fermionic topological order and a symmetry fractionalization class for a global symmetry group $G$, we show how to construct a (3+1)D topologically invariant path integral for a fermionic $G$ symmetry-protected topological state ($G$-F SPT) in terms of an exact combinatorial state sum. This provides a general way to compute anomalies in (2+1)D fermionic symmetry-enriched topological states of matter. Equivalently, our construction provides an exact (3+1)D combinatorial state sum for a path integral of any FSPT that admits a symmetry-preserving gapped boundary, including the (3+1)D topological insulators and superconductors in class AII, AIII, DIII, and CII that arise in the free fermion classification. Our construction uses the fermionic topological order (characterized by a super-modular tensor category) and symmetry fractionalization data to define a (3+1)D path integral for a bosonic theory that hosts a non-trivial emergent fermionic particle, and then condenses the fermion by summing over closed 3-form $mathbb{Z}_2$ background gauge fields. This procedure involves a number of non-trivial higher-form anomalies associated with Fermi statistics and fractional quantum numbers that need to be appropriately canceled off with a Grassmann integral that depends on a generalized spin structure. We show how our construction reproduces the $mathbb{Z}_{16}$ anomaly indicator for time-reversal symmetric topological superconductors with ${bf T}^2 = (-1)^F$. Mathematically, with standard technical assumptions, this implies that our construction gives a combinatorial state sum on a triangulated 4-manifold that can distinguish all $mathbb{Z}_{16}$ $mathrm{Pin}^+$ smooth bordism classes. As such, it contains the topological information encoded in the eta invariant of the pin$^+$ Dirac operator, thus giving an example of a state sum TQFT that can distinguish exotic smooth structure.
Abelian Chern-Simons theory, characterized by the so-called $K$ matrix, has been quite successful in characterizing and classifying Abelian fractional quantum hall effect (FQHE) as well as symmetry protected topological (SPT) phases, especially for b osonic SPT phases. However, there are still some puzzles in dealing with fermionic SPT(fSPT) phases. In this paper, we utilize the Abelian Chern-Simons theory to study the fSPT phases protected by arbitrary Abelian total symmetry $G_f$. Comparing to the bosonic SPT phases, fSPT phases with Abelian total symmetry $G_f$ has three new features: (1) it may support gapless majorana fermion edge modes, (2) some nontrivial bosonic SPT phases may be trivialized if $G_f$ is a nontrivial extention of bosonic symmetry $G_b$ over $mathbb{Z}_2^f$, (3) certain intrinsic fSPT phases can only be realized in interacting fermionic system. We obtain edge theories for various fSPT phases, which can also be regarded as conformal field theories (CFT) with proper symmetry anomaly. In particular, we discover the construction of Luttinger liquid edge theories with central charge $n-1$ for Type-III bosonic SPT phases protected by $(mathbb{Z}_n)^3$ symmetry and the Luttinger liquid edge theories for intrinsically interacting fSPT protected by unitary Abelian symmetry. The ideas and methods used here might be generalized to derive the edge theories of fSPT phases with arbitrary unitary finite Abelian total symmetry $G_f$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا