ترغب بنشر مسار تعليمي؟ اضغط هنا

Construction and classification of symmetry protected topological phases in interacting fermion systems

124   0   0.0 ( 0 )
 نشر من قبل Qing-Rui Wang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The classification and lattice model construction of symmetry protected topological (SPT) phases in interacting fermion systems are very interesting but challenging. In this paper, we give a systematic fixed point wave function construction of fermionic SPT (FSPT) states for generic fermionic symmetry group $G_f=mathbb{Z}_2^f times_{omega_2} G_b$ which is a central extension of bosonic symmetry group $G_b$ (may contain time reversal symmetry) by the fermion parity symmetry group $mathbb{Z}_2^f = {1,P_f}$. Our construction is based on the concept of equivalence class of finite depth fermionic symmetric local unitary (FSLU) transformations and decorating symmetry domain wall picture, subjected to certain obstructions. We will also discuss the systematical construction and classification of boundary anomalous SPT (ASPT) states which leads to a trivialization of the corresponding bulk FSPT states. Thus, we conjecture that the obstruction-free and trivialization-free constructions naturally lead to a classification of FSPT phases. Each fixed-point wave function admits an exactly solvable commuting-projector Hamiltonian. We believe that our classification scheme can be generalized to point/space group symmetry as well as continuum Lie group symmetry.

قيم البحث

اقرأ أيضاً

The computation of certain obstruction functions is a central task in classifying interacting fermionic symmetry-protected topological (SPT) phases. Using techniques in group-cohomology theory, we develop an algorithm to accelerate this computation. Mathematically, cochains in the cohomology of the symmetry group, which are used to enumerate the SPT phases, can be expressed equivalently in different linear basis, known as the resolutions of the group. By expressing the cochains in a reduced resolution containing much fewer basis than the choice commonly used in previous studies, the computational cost is drastically reduced. In particular, it reduces the computational cost for infinite discrete symmetry groups, like the wallpaper groups and space groups, from infinite to finite. As examples, we compute the classification of two-dimensional interacting fermionic SPT phases, for all 17 wallpaper symmetry groups.
The construction and classification of symmetry-protected topological (SPT) phases in interacting bosonic and fermionic systems have been intensively studied in the past few years. Very recently, a complete classification and construction of space gr oup SPT phases were also proposed for interacting bosonic systems. In this paper, we attempt to generalize this classification and construction scheme systematically into interacting fermion systems. In particular, we construct and classify point group SPT phases for 2D interacting fermion systems via lower-dimensional block-state decorations. We discover several intriguing fermionic SPT states that can only be realized in interacting fermion systems (i.e., not in free-fermion or bosonic SPT systems). Moreover, we also verify the recently conjectured crystalline equivalence principle for 2D interacting fermion systems. Finally, the potential experimental realization of these new classes of point group SPT phases in 2D correlated superconductors is addressed.
The classification and construction of symmetry protected topological (SPT) phases have been intensively studied in interacting systems recently. To our surprise, in interacting fermion systems, there exists a new class of the so-called anomalous SPT (ASPT) states which are only well defined on the boundary of a trivial fermionic bulk system. We first demonstrate the essential idea by considering an anomalous topological superconductor with time reversal symmetry $T^2=1$ in 2D. The physical reason is that the fermion parity might be changed locally by certain symmetry action, but is conserved if we introduce a bulk. Then we discuss the layer structure and systematical construction of ASPT states in interacting fermion systems in 2D with a total symmetry $G_f=G_btimesmathbb{Z}_2^f$. Finally, potential experimental realizations of ASPT states are also addressed.
Recently, it has been found that there exist symmetry-protected topological phases of fermions, which have no realizations in non-interacting fermionic systems or bosonic models. We study the edge states of such an intrinsically interacting fermionic SPT phase in two spatial dimensions, protected by $mathbb{Z}_4timesmathbb{Z}_2^T$ symmetry. We model the edge Hilbert space by replacing the internal $mathbb{Z}_4$ symmetry with a spatial translation symmetry, and design an exactly solvable Hamiltonian for the edge model. We show that at low-energy the edge can be described by a two-component Luttinger liquid, with nontrivial symmetry transformations that can only be realized in strongly interacting systems. We further demonstrate the symmetry-protected gaplessness under various perturbations, and the bulk-edge correspondence in the theory.
We study Abelian braiding statistics of loop excitations in three-dimensional (3D) gauge theories with fermionic particles and the closely related problem of classifying 3D fermionic symmetry-protected topological (FSPT) phases with unitary symmetrie s. It is known that the two problems are related by turning FSPT phases into gauge theories through gauging the global symmetry of the former. We show that there exist certain types of Abelian loop braiding statistics that are allowed only in the the presence of fermionic particles, which correspond to 3D intrinsic FSPT phases, i.e., those that do not stem from bosonic SPT phases. While such intrinsic FSPT phases are ubiquitous in 2D systems and in 3D systems with anti-unitary symmetries, their existence in 3D systems with unitary symmetries was not confirmed previously due to the fact that strong interaction is necessary to realize them. We show that the simplest unitary symmetry to support 3D intrinsic FSPT phases is $mathbb{Z}_2timesmathbb{Z}_4$. To establish the results, we first derive a complete set of physical constraints on Abelian loop braiding statistics. Solving the constraints, we obtain all possible Abelian loop braiding statistics in 3D gauge theories, including those that correspond to intrinsic FSPT phases. Then, we construct exactly soluble state-sum models to realize the loop braiding statistics. These state-sum models generalize the well-known Crane-Yetter and Dijkgraaf-Witten models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا