ﻻ يوجد ملخص باللغة العربية
This paper uses a variant of the notion of emph{inaccessible entropy} (Haitner, Reingold, Vadhan and Wee, STOC 2009), to give an alternative construction and proof for the fundamental result, first proved by Rompel (STOC 1990), that emph{Universal One-Way Hash Functions (UOWHFs)} can be based on any one-way functions. We observe that a small tweak of any one-way function $f$ is already a weak form of a UOWHF: consider the function $F(x,i)$ that returns the $i$-bit-long prefix of $f(x)$. If $F$ were a UOWHF then given a random $x$ and $i$ it would be hard to come up with $x eq x$ such that $F(x,i)=F(x,i)$. While this may not be the case, we show (rather easily) that it is hard to sample $x$ with almost full entropy among all the possible such values of $x$. The rest of our construction simply amplifies and exploits this basic property.Combined with other recent work, the construction of three fundamental cryptographic primitives (Pseudorandom Generators, Statistically Hiding Commitments and UOWHFs) out of one-way functions is now to a large extent unified. In particular, all three constructions rely on and manipulate computational notions of entropy in similar ways. Pseudorandom Generators rely on the well-established notion of pseudoentropy, whereas Statistically Hiding Commitments and UOWHFs rely on the newer notion of inaccessible entropy.
We put forth a new computational notion of entropy, measuring the (in)feasibility of sampling high-entropy strings that are consistent with a given generator. Specifically, the ith output block of a generator G has accessible entropy at most k if the
We report the characterization of a universal set of logic gates for one-way quantum computing using a four-photon `star cluster state generated by fusing photons from two independent photonic crystal fibre sources. We obtain a fidelity for the clust
We present fast strongly universal string hashing families: they can process data at a rate of 0.2 CPU cycle per byte. Maybe surprisingly, we find that these families---though they require a large buffer of random numbers---are often faster than popu
A fundamental pursuit in complexity theory concerns reducing worst-case problems to average-case problems. There exist complexity classes such as PSPACE that admit worst-case to average-case reductions. However, for many other classes such as NP, the
For holographic CFT states near the vacuum, entanglement entropies for spatial subsystems can be expressed perturbatively as an expansion in the one-point functions of local operators dual to light bulk fields. Using the connection between quantum Fi