ﻻ يوجد ملخص باللغة العربية
A fundamental pursuit in complexity theory concerns reducing worst-case problems to average-case problems. There exist complexity classes such as PSPACE that admit worst-case to average-case reductions. However, for many other classes such as NP, the evidence so far is typically negative, in the sense that the existence of such reductions would cause collapses of the polynomial hierarchy(PH). Basing cryptographic primitives, e.g., the average-case hardness of inverting one-way permutations, on NP-completeness is a particularly intriguing instance. As there is evidence showing that classical reductions from NP-hard problems to breaking these primitives result in PH collapses, it seems unlikely to base cryptographic primitives on NP-hard problems. Nevertheless, these results do not rule out the possibilities of the existence of quantum reductions. In this work, we initiate a study of the quantum analogues of these questions. Aside from formalizing basic notions of quantum reductions and demonstrating powers of quantum reductions by examples of separations, our main result shows that if NP-complete problems reduce to inverting one-way permutations using certain types of quantum reductions, then coNP $subseteq$ QIP(2).
The no-masking theorem says that masking quantum information is impossible in a bipartite scenario. However, there exist schemes to mask quantum states in multipartite systems. In this work, we show that, the joint measurement in the teleportation is
The closest pair problem is a fundamental problem of computational geometry: given a set of $n$ points in a $d$-dimensional space, find a pair with the smallest distance. A classical algorithm taught in introductory courses solves this problem in $O(
We show that the problem of finding a set with maximum cohesion in an undirected network is NP-hard.
One-way quantum computing is a promising candidate for fault-tolerant quantum computing. Here, we propose new protocols to realize a deterministic one-way CNOT gate and one-way $X$-rotations on quantum-computing platforms. By applying a delayed-choic
We propose a novel one-way quantum repeater architecture based on photonic tree-cluster states. Encoding a qubit in a photonic tree-cluster protects the information from transmission loss and enables long-range quantum communication through a chain o